Citation: Lin Mei, Wu Fan, Liu Tianhui, Chen Zhitao, Xu Xiuzhi, Ke Fang. Visible-Light Promoted Preparation of Benzimidazoles by Eosin Y Catalyzed Reaction of Benzonitrile Derivatives in Water[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2563-2569. doi: 10.6023/cjoc202004016 shu

Visible-Light Promoted Preparation of Benzimidazoles by Eosin Y Catalyzed Reaction of Benzonitrile Derivatives in Water

  • Corresponding author: Lin Mei, linmei@fjmu.edu.cn Ke Fang, kefang@163.com
  • Received Date: 11 April 2020
    Revised Date: 9 May 2020
    Available Online: 25 May 2020

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01820the Natural Science Foundation of Fujian Province 2016Y9053Project supported by the Natural Science Foundation of Fujian Province (Nos. 2016Y9052, 2016Y9053, 2017J01820)the Natural Science Foundation of Fujian Province 2016Y9052

Figures(4)

  • A novel visible-light-introduced reaction for the construction of benzimidazole derivatives via radical cyclization of o-phenylenediamines with benzonitrile derivatives in water has been developed. The reaction has been achieved in high yield under mild conditions by using Eosin Y as photocatalyst, which is cheap, easy to handle and environmentally friendly. A variety of benzimidazoles were obtained in up to 91% yields. It might provide a promising protocol for the synthesis of benzimidazole derivatives.
  • 加载中
    1. [1]

    2. [2]

      (a) Algul, O.; Kaessler, A.; Apcin, Y.; Yilmaz, A.; Jose, J. Molecules 2008, 13, 736.
      (b) Khattab, M.; Galal, S. A.; Ragab, F. A. F.; Diwani, H. I. E. Res. Chem. Intermed. 2013, 39, 2917.
      (c) Khalili, S. B.; Sardarian, A. R. Monatsh. Chem. 2012, 143, 841.
      (d) Hu, Z.; Zhao, T.; Wang, M.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2017, 82, 3152.
      (e) Wang, S.; Guan, L.; Zang, J.; Xing, K.; Zhang, J.; Liu, D.; Zhao, L. Molecules 2019, 24, 1198.

    3. [3]

      (a) Khosravi, K.; Kazemi, S. Chin. Chem. Lett. 2012, 23, 61.
      (b) Zhang, C.; Zhang, L.-R.; Jiao, N. Green Chem. 2012, 14, 3273.
      (c) Shelkar, R.; Sarode, S.; Nagarkar, J. Tetrahedron Lett. 2013, 54, 6986.

    4. [4]

      (a) Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H. R.; Norouzi, L. Monatsh. Chem. 2009, 140, 547.
      (b) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 120, 1958.
      (c) Martins, G. M.; Puccinelli, T.; Gariani, R. A.; Xavier, F. R.; Silveira, C. C.; Mendes, S. R. Tetrahedron Lett. 2017, 58, 1969.
      (d) Nale, D. B.; Bhanage, B. M. Synlett 2015, 26, 2835.
      (e) De Luca, L.; Porcheddu, A. Eur. J. Org. Chem. 2011, 5791.

    5. [5]

      (a) Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 7974.
      (b) Xiao, Q.; Wang, W.-H.; Liu, G.; Meng, F.-K.; Chen, J.-H.; Yang, Z.; Shi, Z.-J. Chem.-Eur. J. 2009, 15, 7292.
      (c) Deng, X.; Mani, N. S. Eur. J. Org. Chem. 2010, 2010, 680.
      (d) Wray, B. C.; Stambuli, J. P. Org. Lett. 2010, 12, 4576.
      (e) Bhagat, S. B.; Ghodse, S. M.; Telvekar, V. N. J. Chem. Sci. 2018, 130, 10.

    6. [6]

      Qu, Y.; Pan, L.; Wu, Z.; Zhou, X. Tetrahedron 2013, 69, 1717.  doi: 10.1016/j.tet.2012.12.039

    7. [7]

      Xiang, S.-K.; Zhang, D.-X.; Hu, H.; Shi, J.-L.; Guo, L.-G.; Feng, C.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Yang, H.; Yu, W.-H. Adv. Synth. Catal. 2013, 355, 1495.  doi: 10.1002/adsc.201300189

    8. [8]

      (a) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001.
      (b) Wu, L.; Wang, L.; Chen, P.; Guo, Y.-L.; Liu, G. Adv. Synth. Catal. 2020, 362, 2189.
      (c) Niknam, E.; Panahi, F.; Khalafi-Nezhad, A. Eur. J. Org. Chem. 2020, 2020, 2699.

    9. [9]

      (a) Yu, J.; Xia, Y.; Lu, M. Appl. Organomet. Chem. 2014, 28, 764.
      (b) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132

    10. [10]

      Fujishima, A.; Honda, K. Nature (London) 1972, 238, 37.

    11. [11]

    12. [12]

      (a) Li, L.; Huang, M.; Liu, C.; Xiao, J. C.; Chen, Q. Y.; Guo, Y.; Zhao, Z. G. Org. Lett. 2015, 17, 4714.
      (b) Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
      (c) Hou, H.; Zhu, S.; Pan, F.; Rueping, M. Org. Lett. 2014, 16, 2872.

    13. [13]

      Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.  doi: 10.1039/C7SC02556D

    14. [14]

      (a) Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Green Chem. 2019, 21, 4329.
      (b) Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. Synth. Commun. 2018, 48, 3089.

    15. [15]

    16. [16]

    17. [17]

      (a) Sharghi, H.; Hosseini Sarvari, M.; Moeini, F. Can. J. Chem. 2008, 86, 1044.
      (b) Sharghi, H.; Aberi, M.; Doroodmand, M. M. Adv. Synth. Catal. 2008, 350, 2380.
      (c) Chen, Y. X.; Qian, L. F.; Zhang, W.; Han, B. Angew.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(32)
  • Abstract views(1462)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return