Citation: Tang Xianjun, Lu Xingliang, Yang Dan, Zhang Min, Xiong Yongtong, Wu Qinglai, Li Junkai. Synthesis and Fungicidal Activities of Novel Tertiary Alcohol Ergosterol Biosynthesis Inhibitors Based on Phenazine-1-carboxylic Acid[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2491-2501. doi: 10.6023/cjoc202004011 shu

Synthesis and Fungicidal Activities of Novel Tertiary Alcohol Ergosterol Biosynthesis Inhibitors Based on Phenazine-1-carboxylic Acid

  • Corresponding author: Wu Qinglai, wql106@163.com Li Junkai, junkaili@sina.com
  • Received Date: 7 April 2020
    Revised Date: 28 April 2020
    Available Online: 11 May 2020

    Fund Project: The National Key Research and Development Program of China 2018YFD200500The National Natural Science Foundation of China 31672069Project supported by the National Key Research and Development Program of China (No. 2018YFD200500), and the National Natural Science Foundation of China (No. 31672069)

Figures(5)

  • During our previous research using natural product phenazine-1-carboxylic acid as the lead compound to develop new pesticides, the phenazine-1-methanol had been found to exhibit excellent fungicidal activity. According to the above fact, a new class of phenazine-1-aryl(5-pyrimidine)methanol derivatives were designed and synthesized by using phenazine-1-methanol as a secondary lead compound, and referring to ergosterol biosynthesis inhibitor fenarimol. The bio-assays showed that compounds 6a~6p displayed moderate fungicidal activities against Thanatephorus cucumeris and Phytophthora capsici. An interesting result is that the fungicidal activities of some of the target compounds against Phenazine-1-carboxylic-Acid (PCA) specific spectrum Thanatephorus cucumeris are greatly reduced, while against fenarimol characteristic spectrum wheat powdery mildew (Erysiphe graminis) retain moderate or strong control effects. The above bio-assays results indicated the mode of action of compounds 6a~6p may be different from that of PCA, but similar to fenarimol. Therefore, further ergosterol biosynthesis inhibition experiment proved that the target compounds had the same mode of action as commercially available fungicide fenarimol.
  • 加载中
    1. [1]

      Zubrod, J. P.; Bundschuh, M.; Arts, G.; Brühl, C. A.; Imfeld, G.; Knä bel, A.; Payraudeau, S.; Rasmussen, J. J.; Rohr, J.; Scharmüller, A.; Smalling, K.; Stehle, S.; Schulz, R.; Schä fer, R. B. Environ. Sci. Technol. 2019, 53, 7.
       

    2. [2]

      Jeschke, P. Pest Manage. Sci. 2015, 72, 3.
       

    3. [3]

      Senior, I. J.; Hollomon, D. W.; Loeffler, R. S. T.; Baldwin, B. C. J. Pestic. Sci.1995, 45, 1.  doi: 10.1002/ps.2780450102

    4. [4]

      Mounkoro, P.; Michel, T.; Benhachemi, R.; Surpateanu, G.; Iorga, B. I.; Fisher, N. Meunier, B. Pest Manage. Sci. 2019, 75, 8.
       

    5. [5]

      Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bemis, C.; Salvayre, R.; Negre-Salvayre, A.; Baltas, M. Eur. J. Med. Chem. 2010, 45, 7.
       

    6. [6]

      Abbott, W. S. J. Econ. Entomol. 1925, 18, 2.  doi: 10.1093/jee/18.1.2

    7. [7]

      Sparks, T. C.; Hahn, D. R.; Garizi, N. V. Pest Manage. Sci. 2017, 73, 4.
       

    8. [8]

      Copping, L. G.; Duke, S. O. Pest Manage. Sci. 2007, 63, 6.
       

    9. [9]

      Pillmoor, J. B.; Wright, K.; Terry, A. S. J. Pestic. Sci. 1993, 39, 2.
       

    10. [10]

      Zhu, X.; Wu, Q. L.; Li, J. K. Chin. J. Org. Chem. 2019, 39, 10(in Chinese).
       

    11. [11]

      Laursen, J. B.; Nielsen, J. Chem. Rev. 2004, 104, 3.
       

    12. [12]

      Ge, Y. H.; Pei, D. L.; Zhao, Y. H.; Li, W. W.; Wang, S. F.; Xu, Y. Q. Curr. Microbiol. 2007, 54, 4.

    13. [13]

      Palchykovska, L. G.; Vasylchenko, O. V.; Platonov, M. O.; Kostina, V. G. Biopolym. Cell 2012, 28, 6.
       

    14. [14]

      Rewcastle, G. W.; Denny, W. A.; Baguley, B. C. J. Med. Chem. 1987, 18, 47.
       

    15. [15]

      Spicer, J. A.; Gamage, S. A.; Rewcastle, G. W.; Finlay, G. J.; Bridewell, D. J. A.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 2000, 43, 7.
       

    16. [16]

      Mavrodi, D. V.; Ksenzenko, V. N.; Bonsall, R. F.; Cook, R. J.; Boronin, A. M.; Thomashow, L. S. J. Bacteriol. 1998, 180, 9.

    17. [17]

      Ma, Z. W.; Shen, X. M.; Hu, H. B.; Wang, W.; Peng, H. S.; Xu, P.; Zhang, X. H. J. Bacteriol. 2012, 194, 13.
       

    18. [18]

      Zhu, X.; Yu, L. H.; Zhang, M.; Xu, Z. H.; Yao, Z. L.; Wu, Q. L.; Du, X. Y.; Li, J. K. Chem. Cent. J. 2018, 12, 10.  doi: 10.1186/s13065-018-0385-6

    19. [19]

      Ye, L.; Zhang, H. Y.; Xu, H.; Zou, Q.; Cheng, C.; Dong, D. X.; Xu, Y. Q.; Li, R. X. Bioorg. Med. Chem. Lett. 2010, 20, 24.
       

    20. [20]

      Niu, J. F.; Chen, J.; Xu, Z. H.; Zhu, X.; Wu, Q. L.; Li, J. K. Bioorg. Med. Chem. Lett. 2016, 26, 22.

    21. [21]

      Xiong, Z. P.; Niu, J. F.; Liu, H.; Xu, Z. H.; Li, J. K.; Wu, Q. L. Bioorg. Med. Chem. Lett. 2017, 27, 9.

    22. [22]

      Krishnaiah, M.; De, Almeida, N. R.; Udumula, V.; Song, Z. C.; Chhonker, Y. S.; Abdelmoaty, M. M.; Do Nascimento, V. A.; Murry, D. J.; Conda-Sheridan, M. Eur. J. Med. Chem. 2018, 143, 1.  doi: 10.1016/j.ejmech.2017.11.012

    23. [23]

      Lu, X. L.; Zhu, X. Y.; Zhang, M.; Wu, Q. L.; Xu, Z. H.; Zhou, X. D.; Li, J. K. Nat. Prod. Res. 2019, 33, 15.

    24. [24]

      Qin, C.; Yu, D. Y.; Zhou, X. D.; Zhang, M.; Wu, Q. L.; Li, J. K. J. Asian Nat. Prod. Res. 2019, 21, 6.

    25. [25]

      Zhu, X.; Yu, L. H.; Hsiang, T.; Huang, D.; Xu, Z.; Wu, Q.; Du, X.; Li, J. Pest Manage. Sci. 2019, 75, 12.

    26. [26]

      Lee, J. K.; Park, S. H.; Lee, E. Y.; Kim, Y. J.; Kyung, K. S. J. Agric. Food Chem. 2004, 52, 24.
       

    27. [27]

      Lamberth, C. Heterocycles 2006, 68, 36.
       

    28. [28]

      Burden, R. S.; Cooke, D. T.; Carter, G. A. Phytochemistry 1989, 20, 49.

    29. [29]

      He, L. M.; Cui, K. D.; Ma, D. C.; Shen, R. P.; Huang, X. P.; Jiang, J. G.; Mu, W.; Liu, F. Plant Dis. 2017, 101, 7.
       

    30. [30]

      Hossain, M. Z.; Goto, T. Food Anal Methods 2015, 8, 4.
       

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    9. [9]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    10. [10]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    11. [11]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    12. [12]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    13. [13]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(5)
  • Abstract views(1898)
  • HTML views(403)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return