Citation: Sun Xiaohua, Sun Chuance, Feng Lijun, Kang Congmin. Recent Progress in the Synthesis of Thieno[2, 3-d]pyrimidine Compounds via Tandem Cyclization[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2626-2640. doi: 10.6023/cjoc202004002 shu

Recent Progress in the Synthesis of Thieno[2, 3-d]pyrimidine Compounds via Tandem Cyclization

  • Corresponding author: Kang Congmin, cmkang@qust.edu.cn
  • Received Date: 1 April 2020
    Revised Date: 31 May 2020
    Available Online: 19 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21272131)the National Natural Science Foundation of China 21272131

Figures(34)

  • Thieno[2, 3-d]pyrimidine compounds are an important class of organic synthesis intermediates and pharmacologically active molecules, which not only have broad medical application prospect, but also worth researching. Therefore the synthesis of them has attracted much attention. The previous methods mainly apply tandem cyclization or one-pot multi-com-ponent reaction combined with microwave-assisted reaction or new catalysts to reach the purpose of shortening reaction time, reducing steps, enhancing yields and lowering costs. In this paper, the recent progress in the synthesis of thieno[2, 3-d]pyri-midine compounds via tandem cyclization in recent ten years, especially in the latest five years, is reviewed. The problems and limitations faced are discussed, and the development directions are also prospected.
  • 加载中
    1. [1]

      Hafez, H. N.; El-gazzar, A. B. A.; Nawwar, G. A. M. Eur. J. Med. Chem. 2010, 45, 1486.

    2. [2]

      Ashalatha, B. V.; Narayana, B.; Raj, K. K. V.; Kumari, N. S. Eur. J. Med. Chem. 2007, 42, 722.

    3. [3]

      Borate, H. B.; Annadate, R. A.; Vagh, S. S.; Pisal, M. M.; Deokate, S. B.; Arkile, M. A.; Jadhav N. J.; Nawale, L. U.; Sarkar, D. MedChemComm 2015, 6, 2213.

    4. [4]

      Al-Taisan, K. M.; Al-Hazimi, H.; Al-Shihry, S. S. Molecules 2010, 15, 3939.

    5. [5]

      El-Batanony, N. H. Period. Biol. 2017, 119, 29.

    6. [6]

      Bakavoli, M.; Bagherzadeh, G.; Vaseghifar, M.; Shiri, A.; Pordeli, P. J. Chem. Res. 2009, 654.

    7. [7]

      Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Rao, C. V. Eur. J. Med. Chem. 2012, 58, 341.

    8. [8]

      Pedeboscq, S.; Gravier, D.; Casadebaig, F.; Hou, G.; Gissot, A.; Rey, C.; Ichas, F.; Giorgi, F. D.; Lartigue, L.; Pometan, J. P. Bioorg. Med. Chem. 2012, 20, 6726.

    9. [9]

      Mavrova, A. T.; Dimov, S.; Yancheva, D.; Rangelov, M.; Wesselinova, D.; Tsenov, J. A. Eur. J. Med. Chem. 2016, 123, 75.

    10. [10]

      Guo, Y. C.; Li, J.; Ma, J. L.; Yu, Z. R.; Wang, H. W.; Zhu, W. J.; Liao, X. C.; Zhao, Y. F. Chin. Chem. Lett. 2015, 26, 757.

    11. [11]

      Song, X. J.; Yang, P.; Gao, H.; Wang, Y.; Dong, X. G.; Tan, X. H. Chin. Chem. Lett. 2014, 25, 1007.

    12. [12]

      Mavrova, A. T.; Vuchev, D.; Anichina, K.; Vassilev, N. Eur. J. Med. Chem. 2010, 45, 5857.

    13. [13]

      Fruscia, P. D.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, L. M.; Koltsida, M.; Reynolds, C. R.; Schmidtkunz, K.; Jung, M.; Chapman, K. L.; Steegborn, C.; Dexter, D. T.; Sternberg, M. J. E.; Lam, E. W. F.; Fuchter, M. J. ChemMedChem 2015, 10, 76.

    14. [14]

      Zhao, A. L.; Liu, S.; Zhu, Y. M.; Wang, T.; Luo, J. Chin. J. Org. Chem. 2017, 37, 1879 (in Chinese).
       

    15. [15]

      Miwa, K.; Hitaka, T.; Imada, T.; Sasaki, S.; Yoshimatsu, M.; Kusaka, M.; Tanaka, A.; Nakata, D.; Furuya, S.; Endo, S.; Hamamura, K.; Kitazaki, T. J. Med. Chem. 2011, 54, 4999.

    16. [16]

      Markham, A. Drugs 2019, 79, 676.

    17. [17]

      Porvasnik, S. L.; Germain, S.; Embury, J.; Gannon, K. S.; Jacques, V.; Murray, J.; Byrne, B. J.; Shacham, S.; Al-Mousily, F. J. Pharm. Exp. Ther. 2010, 334, 365.

    18. [18]

      Svejda, B.; Kidd, M.; Giovinazzo, F.; Eltawil, K.; Gustafsson, B. I.; Pfragner, R.; Modlin, I. M. Cancer 2010, 116, 2905.

    19. [19]

      Wu, Y. L.; Yoshida, M.; Emoto, H.; Ishii, H.; Koga, K.; Tanaka, M. Jpn. J. Pharmacol. 2000, 83, 32.

    20. [20]

      Schreiber, S.; Schreiber, F.; Lockhart, S. N.; Horng, A.; Bejanin, A.; Landau, S. M.; Jagust, W. J. JAMA Neurol. 2017, 20, 3.

    21. [21]

      Beggs, J. E.; Tian, S.; Jones, G. G.; Xie, J.; Iadevaia, V.; Jenei, V.; Thomas, G.; Proud, C. G. Biochem. J. 2015, 467, 66.

    22. [22]

      Jin, X.; Merrett, J. E.; Tong, S.; Flower, B.; Xie, J.; Yu, R.; Tian, S.; Gao, L.; Zhao, J.; Wang, X.; Jiang, T.; Proud, C. G. Eur. J. Med. Chem. 2019, 162, 737.

    23. [23]

      Wang, Y. D.; Johnson, S. M.; Powell, D.; Mcginnis, J. P.; Miranda, M.; Rabindran, S. K. Bioorg. Med. Chem. Lett. 2005, 15, 3764.

    24. [24]

      Ouyang, L.; Zhang, L.; Liu, J.; Fu, L.; Yao, D.; Zhao, Y.; Zhang, S.; Wang, G.; He, G.; Liu, B. J. Med. Chem. 2017, 60, 9991.

    25. [25]

      Yang, P.; Wang, Y.; Duan, Z. C.; Shao, Y.; Nie, G. H.; Song, X. J.; Tian, D. T. Chin. J. Struct. Chem. 2013, 32, 1024.

    26. [26]

      Gao, H.; Fu, J.; Zhao, M. J.; Song, X. J.; Yang, P.; Zhang, Y. Chin. J. Struct. Chem. 2015, 34, 10

    27. [27]

      Huang, Y.; Dömling, A. Mol. Diversity 2011, 15, 4.

    28. [28]

      Zhang, B. Z.; Liu, Y.; Wang, L. Chin. J. Antibiot. 2012, 37, 579 (in Chinese).

    29. [29]

      Li, M. R.; Ding, Q. F.; Li, B. Y.; Yu, Y.; Huang, H.; Huang, F. Chin. J. Org. Chem. 2019, 39, 2714 (in Chinese).
       

    30. [30]

      Wang, Z. H.; Wang, L.; Wang, Z. M.; Li, P. H. Asian J. Org. Chem. 2019, 8, 3.  doi: 10.1002/ajoc.201800689

    31. [31]

      Jing, X.; Li, Z.; Wu, L.; Yan, C. J. Iran. Chem. Soc. 2011, 8, 112.

    32. [32]

      Fruscia, P. D.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, L. F.; Koltsida, K.; Reynolds, C. R.; Schmidtkunz, K.; Jung, M.; Chapman, K. L.; Steegborn, C.; Dexter, D. Y.; Sternberg, M. J. E.; Lam, E. W. F.; Fuchter, M. J. ChemMedChem 2015, 10, 70.

    33. [33]

      Han, F. B.; Lin, S. W.; Liu, P.; Liu, X. J.; Tao, J.; Deng, X. B.; Yi, C. Q.; Xu, H. ACS Med. Chem. Lett. 2015, 6, 436.

    34. [34]

      Gill, K. R.; Kumar, V.; Bishnoi, M.; Yadav, K.; Kondepudi, K. K.; Bariwal, J. Anti-Cancer Agents Med. Chem. 2017, 17, 706.

    35. [35]

      Pokhodylo, N. T.; Matiychuk, V. S.; Obushak, M. D. Tetrahedron 2008, 64, 1431.

    36. [36]

      Pokhodylo, N. T.; Shyyka, O. Y.; Matiychuk, V. S.; Obushak, M. D. ACS Comb. Sci. 2015, 17, 399.  doi: 10.1021/co5001376

    37. [37]

      Soares, M. I.; Lyra, A. C. F.; Henriques, M. S. C.; PaixŃo, J. A.; Melo, T. M. V. D. P. Tetrahedron 2015, 71, 3344.

    38. [38]

      Moustafa, A. H.; Ahmed, W. W.; Khodairy, A. J. Heterocycl. Chem. 2017, 54, 3493.

    39. [39]

      Hassan, A. A.; Khattab, R. R.; Wasfy, A. A. F.; Abuzeid, K. M.; Hassan, N. A. J. Heterocycl. Chem. 2018, 55, 908.

    40. [40]

      Fouad, M. M.; El-Bendary, E. R.; Suddek, G. M.; Shehata, I. A.; El-Kerdawy, M. M. Bioorg. Chem. 2018, 81, 588.

    41. [41]

      Ameen, M. A.; Ahmed, E. K.; Mahmoud, H. I.; Ramadan, M. J. Heterocycl. Chem. 2019, 56, 1832.

    42. [42]

      Mavrova, A. T.; Vuchev, D.; Anichina, K.; Vassilev, N. Eur. J. Med. Chem. 2010, 45, 5858.

    43. [43]

      Dai, Z. X.; Chen, H.; Liu, M. G.; Ding, M. W. Heterocycl. Commun. 2011, 17, 198.

    44. [44]

      El-Shehry, M. F.; Hosni, H. M.; Amr, A. E.; Ibrahim, A. A.; Fayed, A. A.; Elnaggar, D. H. Russ. J. Gen. Chem. 2019, 89, 1529.

    45. [45]

      Bakavoli, M.; Bagherzadeh, G.; Vaseghifar, M.; Shiri, A.; Pordeli, P. J. Chem. Res. 2009, 654.

    46. [46]

      Yang, P.; Wang, Y.; Duan, Z. C.; Shao, Y.; Nie, G. H.; Song, X. J.; Tian, D. T. Chin. J. Struct. Chem. 2013, 32, 1024.

    47. [47]

      Furuyama, T.; Noguchi, D.; Suzuki, Y.; Kobayashi, N. Can. J. Chem. 2014, 92, 767.

    48. [48]

      Gao, H.; Fu, J.; Zhao, M. J.; Song, X. J.; Yang, P.; Zhang, Y. Chin. J. Struct. Chem. 2015, 34, 10.

    49. [49]

      Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Parizadeh, S. M.; Bakavoli, M. J. Heterocycl. Chem. 2017, 54, 367.

    50. [50]

      Sureja, D. K.; Vadalia, K. R. J. Saudi Chem. Soc. 2017, 22, 251.

    51. [51]

      Khatri, T. T.; Shah, V. H. J. Chil. Chem. Soc. 2017, 62, 3355.

    52. [52]

      Ramya, P. V. S.; Thatikonda, S.; Angapelly, S.; Babu, B. N.; Naidu, V. G. M.; Kamal, A. ChemistrySelect 2018, 3, 3102.

    53. [53]

      Zong, C. Y.; Zhang, L. J.; Gu, M. Y.; Sun, Y. Q. Chin. J. Org. Chem. 2018, 38, 1422 (in Chinese).
       

    54. [54]

      Elmetwally, S. A.; Saied, K. F.; Eissa, I. H.; Elkaeed, E. B. Bioorg. Chem. 2019, 88, 102944.  doi: 10.1016/j.bioorg.2019.102944

    55. [55]

      Han, Q.; Yin, Z. J.; Sui, J. J.; Wang, Q. M.; Sun, Y. Q. J. Braz. Chem. Soc. 2019, 30, 1487.

    56. [56]

      Poojari, S.; Naik, P. P.; Krishnamurthy, G. Tetrahedron Lett. 2012, 53, 4639.  doi: 10.1016/j.tetlet.2012.06.017

    57. [57]

      El-Sayed, N. N.; Abdelaziz, M. A.; Wardakhan, W. W.; Mohareb, R. M. Steroids 2016, 107, 99.

    58. [58]

      Amawi, H.; Karthikeyan, C.; Pathak, R.; Hussein, N.; Christman, R.; Robey, R.; Ashby Jr. C. R.; Trivedi, P.; Tiwari, A. K. Eur. J. Med. Chem. 2017, 138, 1058.

    59. [59]

      Ghashang, M. J. Iran. Chem. Soc. 2018, 15, 56.

    60. [60]

      Ghayour, F.; Shafiee, M. R. M.; Ghashang, M. Main Group Met. Chem. 2018, 41, 23.

    61. [61]

      Shafighi, S.; Shafiee, M. R. M.; Ghashang, M. J. Sulfur Chem. 2018, 39, 404.

    62. [62]

      Brough, P. A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies, N. G. M.; Davis, B.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Garcia-Echeverria, C.; Fromont, C.; Hayes, A.; Hubbard, R. E.; Jordan, A. M.; Jensen, M. R.; Massey, A.; Merrett, A.; Padfield, A.; Parsons, R.; Radimerski, T.; Raynaud, F. I.; Robertson, A.; Roughley, S. D.; Schoepfer, J.; Simmonite, H.; Sharp, S. Y.; Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Wood, M.; Workman, P.; Wright, L. J. Med. Chem. 2009, 52, 4796.

    63. [63]

      Kobayashi, K.; Suzuki, T.; Kozuki, T.; Matsumoto, N.; Hiyoshi, H.; Umezu, K. Heterocycles 2012, 85, 1407.

    64. [64]

      Wilding, B.; Faschauner, S.; Klempier, N. Tetrahedron Lett. 2015, 56, 4487.

    65. [65]

      Tolba, M. S.; El-Dean, A. M. K.; Ahmed, M.; Hassanien, R.; Farouk, M. ARKIVOC 2017, 5, 231.

    66. [66]

      Ho, Y. W.; Yao, W. H. J. Chem. 2013, 2013, 5.

    67. [67]

      Xu, J.; Fan, W. G.; Popowycz, F.; Queneau, Y.; Gu, Y. L. Chin. J. Org. Chem. 2019, 39, 2131 (in Chinese).
       

    68. [68]

      Tang, M.; Xing, D.; Cai, M. Q.; Hu, W. H. Chin. J. Org. Chem. 2014, 34, 1268 (in Chinese).
       

    69. [69]

      Kusebauch, U.; Beck, B.; Messer, K.; Herdtweck, E.; Domling, A. Org. Lett. 2003, 5, 4021.  doi: 10.1021/ol035010u

    70. [70]

      Shi, T.; Kaneko, L.; Sandino, M.; Busse, R.; Zhang, M.; Mason, D.; Machulis, J.; Ambrose, A. J.; Zhang, D. D.; Chapman, E. ACS Sustain. Chem. Eng. 2018, 7, 1526.

    71. [71]

      Shi, T.; Zerio, C.; Sivinski, J.; Ambrose, A. J.; Moore, K. T.; Buckley, T.; Kaneko, L.; Zhang, M.; Zhang, D. D.; Chapman, E. Eur. J. Org. Chem. 2019, 3270.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    13. [13]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    19. [19]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(22)
  • Abstract views(1208)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return