Citation: Tian Xueqi, Zuo Minzan, Niu Pengbo, Wang Kaiya, Hu Xiaoyu. Research Advances of Host-Guest Supramolecular Self-Assemblies with Aggregration-Induced Emission Effect and Their Applications in Biomedical Field[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1823-1834. doi: 10.6023/cjoc202003066 shu

Research Advances of Host-Guest Supramolecular Self-Assemblies with Aggregration-Induced Emission Effect and Their Applications in Biomedical Field

  • Corresponding author: Hu Xiaoyu, huxy@nuaa.edu.cn
  • Received Date: 30 March 2020
    Revised Date: 21 April 2020
    Available Online: 7 May 2020

    Fund Project: The Fundamental Research Funds for the Central Universities NE2019002Project supported by the Natural Science Foundation of Jiangsu Province BK20180055The China Postdoctoral Science Foundation Project 2019M661816Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20180055), the Fundamental Research Funds for the Central Universities (No. NE2019002) and the China Postdoctoral Science Foundation Project (No. 2019M661816)

Figures(19)

  • Host-guest interaction, as one of the most important behaviors in supramolecular self-assemblies, is often used to construct functional supramolecular materials. Based on host-guest interaction, it has become a hotspot in supramolecular chemistry by utilizing macrocyclic hosts and guests with aggregation-induced emission (AIE) properties as building blocks to construct supramolecular system, which can be widely used in drug delivery, cellular imaging, biosensing and so on. According to the origination of fluorescence effects of supramolecular assemblies, either from the host or guest molecules, the recent 5-year advances of AIE supramolecular self-assemblies based on host-guest interaction by utilizing macrocycles such as cyclodextrin, calixarene, cucurbituril, pillararene and other water-soluble host molecules are summarized, and their applications in the biomedical field are discussed.
  • 加载中
    1. [1]

      Lehn, J.-M. Angew. Chem., Int. Ed. 1988, 27, 89.  doi: 10.1002/anie.198800891

    2. [2]

      Shao, W.; Liu, X.; Wang, T.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1107(in Chinese).

    3. [3]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
       

    4. [4]

      Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Comm. 2009, 30, 267.  doi: 10.1002/marc.200800713

    5. [5]

      Xu, Z.-Y.; Zhang, Y.-C.; Lin, J.-L.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Prog. Chem. 2019, 31, 1540(in Chinese).
       

    6. [6]

      Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew. Chem., Int. Ed. 2003, 42, 4640.  doi: 10.1002/anie.200250653

    7. [7]

      Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Mol. Pharm. 2010, 7, 1899.  doi: 10.1021/mp100228v

    8. [8]

      Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991.  doi: 10.1038/nmat3776

    9. [9]

      Gao, T.; Li, L.; Wang, B.; Zhi, J.; Xiang, Y.; Li, G. Anal. Chem. 2016, 88, 9996.  doi: 10.1021/acs.analchem.6b02156

    10. [10]

      Ma, X.; Zhao, Y. Chem. Rev. 2015, 115, 7794.  doi: 10.1021/cr500392w

    11. [11]

      Zhao, J.-Y.; Yang, Y.; Han, X.; Liang, C.; Liu, J.-J.; Song, X.-J.; Ge, Z.-L.; Liu, Z. ACS Appl. Mater. Interfaces 2017, 9, 23555.  doi: 10.1021/acsami.7b07535

    12. [12]

      Duan, Q.-P.; Cao, Y.; Li, Y.; Hu, X.-Y.; Xiao, T.-X.; Lin, C.; Pan, Y.; Wang, L.-Y. J. Am. Chem. Soc. 2013, 135, 10542.  doi: 10.1021/ja405014r

    13. [13]

      Chen, P.-P.; Shi, B.-B. Prog. Chem. 2017, 29, 720(in Chinese).
       

    14. [14]

      Birks, J. B. Photophysics of Aromatic Molecules, Wiley Interscience, London, 1970.
       

    15. [15]

      An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410.  doi: 10.1021/ja0269082

    16. [16]

      Luo, J.-D.; Xie, Z.-L.; Lam, J. W. Y.; Cheng, L.; Tang, B.-Z.; Chen, H.-Y.; Qiu, C.-F.; Kwok, H. S.; Zhan, X.-W.; Liu, Y.-Q.; Zhu, D.-B. Chem. Commun. 2001, 1740.
       

    17. [17]

      Jiang, B.-P.; Guo, D.-S.; Liu, Y.-C.; Wang, K.-P.; Liu, Y. ACS Nano 2014, 8, 1609.  doi: 10.1021/nn405923b

    18. [18]

      Zhang, S.; Qin, A.-J.; Sun, J.-Z.; Tang, B.-Z. Prog. Chem. 2011, 23, 623(in Chinese).
       

    19. [19]

      Qian, Y.; Jie, L.-H.; Wang, S.-Q.; Yang, G.-Q. J. Nanjing Univ. Posts Telecommun. (Nat. Sci.) 2008, 28, 1(in Chinese).
       

    20. [20]

      Tang, B.-Z.; Zhan, X.-W.; Yu, G.; Lee, P.; Liu, Y.-Q.; Zhu, D.-B. J. Mater. Chem. 2001, 11, 2974.  doi: 10.1039/b102221k

    21. [21]

      Zhou, J.; Hua, B.; Shao, L.; Feng, H.; Yu, G.-C. Chem. Commun. 2016, 52, 5749.  doi: 10.1039/C6CC01860B

    22. [22]

      Wang, P.; Yan, X.-Z.; Huang, F.-H. Chem. Commun. 2014, 50, 5017.  doi: 10.1039/c4cc01560f

    23. [23]

      Cram, D. J.; Cram, J. M. Science 1974, 183, 803.  doi: 10.1126/science.183.4127.803

    24. [24]

      Zhang, L.-X.; Chen, Q. Synth. Mater. Aging Appl. 2018, 47, 108(in Chinese).
       

    25. [25]

      Liang, G.; Lam, J. W. Y.; Qin, W.; Li, J.; Xie, N.; Tang, B.-Z. Chem. Commun. 2014, 50, 1725.  doi: 10.1039/C3CC48625G

    26. [26]

      Xu, L.-X. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2019 (in Chinese).

    27. [27]

      Wang, Y.; Yang, N.; Wang, D.-D.; He, Y.; Chen, L.; Zhao, Y.-P. Polym. Degrad. Stab. 2018, 147, 123.  doi: 10.1016/j.polymdegradstab.2017.11.023

    28. [28]

      Zhang, P.; Qian, X.-P.; Zhang, Z.-K.; Li, C.; Xie, C.; Wu, W.; Jiang, X.-Q. ACS Appl. Mater. Interfaces 2017, 9, 5768.  doi: 10.1021/acsami.6b14464

    29. [29]

      Bortolus, P.; Grabner, G.; Kohler, G.; Monti, S. Coord. Chem. Rev. 1993, 125, 261.  doi: 10.1016/0010-8545(93)85023-W

    30. [30]

      Zhang, L.; Hu, W.; Yu, L.; Wang, Y. Chem. Commun. 2015, 51, 4298.  doi: 10.1039/C4CC09769F

    31. [31]

      Zhao, Q.; Chen, Y.; Sun, M.; Wu, X.-J.; Liu, Y. RSC Adv. 2016, 6, 50673.  doi: 10.1039/C6RA07572J

    32. [32]

      Li, Q.-L.; Wang, D.; Cui, Y.-Z.; Fan, Z.-Y.; Ren, L.; Li, D.-D.; Yu, J.-H. ACS Appl. Mater. Interfaces 2018, 10, 12155.  doi: 10.1021/acsami.7b14566

    33. [33]

      Guo, Y.-M.; Cao, F.-P.; Lei, X.-L.; Mang, L.-H.; Cheng, S.-J.; Song, J.-T. Nanoscale 2016, 8, 4852.  doi: 10.1039/C6NR00145A

    34. [34]

      Huang, Y.-Y.; Ji, J.-H.; Zhang, J.; Wang, F.; Lei, J.-P. Chem. Commun. 2020, 56, 313.  doi: 10.1039/C9CC07697B

    35. [35]

      Barrow, S. J.; Kasera, S.; Rowland, M. J.; Del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.  doi: 10.1021/acs.chemrev.5b00341

    36. [36]

      Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.  doi: 10.1002/anie.200460675

    37. [37]

      Masson, E.; Ling, X.-X.; Roymon, J.; Lawrence, K. M.; Lu, X.-Y. RSC Adv. 2012, 2, 1213.  doi: 10.1039/C1RA00768H

    38. [38]

      Chen, J.-F.; Liu, Y.-M.; Mao, D.-K.; Ma, D. Chem. Commun. 2017, 53, 8739.  doi: 10.1039/C7CC04535B

    39. [39]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    40. [40]

      Ogoshi, T.; Yamagishi, T. A.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937.  doi: 10.1021/acs.chemrev.5b00765

    41. [41]

      Xue, M.; Yang, Y.; Chi, X.-D.; Zhang, Z.-B.; Huang, F.-H. Acc. Chem. Res. 2012, 45, 1294.  doi: 10.1021/ar2003418

    42. [42]

      Cao, D.-R.; Meier, H. Chin. Chem. Lett. 2019, 30, 1758.  doi: 10.1016/j.cclet.2019.06.026

    43. [43]

      Zhang, H.-C.; Liu, Z.-N.; Xin, F.-F.; Hao, A.-Y. Chin. J. Org. Chem. 2012, 32, 219(in Chinese).
       

    44. [44]

      Sun, J.-F.; Shao, L.; Zhou, J.; Hua, B.; Zhang, Z.-H.; Li, Q.; Yang, J. Tetrahedron Lett. 2018, 59, 147.  doi: 10.1016/j.tetlet.2017.12.009

    45. [45]

      Zhang, C.-W.; Ou, B.; Jiang, S.-T.; Yin, G.-Q.; Chen, L.-J.; Xu, L.; Li, X.-P.; Yang, H.-B. Polym. Chem.-UK 2018, 9, 2021.  doi: 10.1039/C8PY00226F

    46. [46]

      Wang, P.; Liang, B.-C.; Xia, Y.-D. Inorg. Chem. 2019, 58, 2252.  doi: 10.1021/acs.inorgchem.8b02896

    47. [47]

      Wu, Y.-H.; Chen, Q.-X.; Li, Q.-Y.; Lu, H.-G.; Wu, X.-S.; Ma, J.-B.; Gao, H. J. Mater. Chem. B 2016, 4, 6350.
       

    48. [48]

      Dong, R.-J.; Ravinathan, S. P.; Xue, L.-Z.; Li, N.; Zhang, Y.-J.; Zhou, L.-Z.; Cao, C.-X.; Zhu, X.-Y. Chem. Commun. 2016, 52, 7950.  doi: 10.1039/C6CC02794F

    49. [49]

      Hui, X.; Xu, D.-Z.; Wang, K.; Yu, W.-J.; Yuang, H.-Y.; Liu, M.-Y.; Shen, Z.-Y.; Zhang, X.-Y.; Wei, Y. RSC Adv. 2015, 5, 107355.
       

    50. [50]

      Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.-Y.; Wei, Y. Mater. Sci. Eng., C 2017, 78, 862.  doi: 10.1016/j.msec.2017.04.080

    51. [51]

      Xu, D.-Z.; Liu, M.-Y.; Zou, H.; Huang, Q.; Huang, H.-Y.; Tian, J.-W.; Jiang, R.-M.; Wen, Y.-Q.; Zhang, X.-Y.; Wei, Y. J. Taiwan Inst. Chem. Eng. 2017, 78, 455.  doi: 10.1016/j.jtice.2017.05.024

    52. [52]

      Guo, L.-L.; Xu, D.-Z.; Huang, L.; Liu, M.-Y.; Huang, H.-Y.; Tian, J.-W.; Jiang, R.-M.; Wen, Y.-Q.; Zhang, X.-Y.; Wei, Y. Mater. Sci. Eng., C 2018, 85, 233.  doi: 10.1016/j.msec.2017.12.031

    53. [53]

      Liow, S.-S.; Zhou, H.; Sugiarto, S.; Guo, S.-F.; Chalasani, M. L. S.; Verma, N. K.; Xu, J.-W.; Loh, X.-J. Biomacromolecules 2017, 18, 886.  doi: 10.1021/acs.biomac.6b01777

    54. [54]

      Perret, F.; Coleman, A. W. Chem. Commun. 2011, 47, 7303.  doi: 10.1039/c1cc11541c

    55. [55]

      Tian, H.-W.; Liu, Y.-C.; Guo, D.-S. Mater. Chem. Front. 2020, 4, 46.  doi: 10.1039/C9QM00489K

    56. [56]

      Guo, D.-S.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.  doi: 10.1021/ar500009g

    57. [57]

      Guo, D.-S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907.  doi: 10.1039/c2cs35075k

    58. [58]

      Jiang, B.-P.; Guo, D.-S.; Liu, Y.-C.; Wang, K.-P.; Liu, Y. ACS Nano. 2014, 8, 1609.  doi: 10.1021/nn405923b

    59. [59]

      Chen, C.; Ni, X.; Tian, H.-W.; Liu, Q.; Guo, D.-S.; Ding, D. Angew. Chem., Int. Ed. 2020, 59, 10008.  doi: 10.1002/anie.201916430

    60. [60]

      Wu, D.; Li, Y.; Yang, J.; Shen, J.; Zhou, J.; Hu, Q.-L.; Yu, G.-C.; Tang, G.-P.; Chen, X.-Y. ACS Appl. Mater. Interfaces 2017, 9, 44392.  doi: 10.1021/acsami.7b16734

    61. [61]

      Yao, C.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhang, F.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 893.  doi: 10.1016/j.cclet.2017.01.005

    62. [62]

      Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351.  doi: 10.1039/C6CC02331B

    63. [63]

      Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acta Chim. Sinica 2015, 73, 471(in Chinese).

    64. [64]

      Li, Y.-W.; Dong, Y.-H.; Miao, X.-R.; Ren, Y.-L.; Zhang, B.-L.; Wang, P.-P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L.-P. Angew. Chem., Int. Ed. 2018, 57, 729.  doi: 10.1002/anie.201710553

    65. [65]

      Liu, H.; Zhang, Z.-H.; Zhao, Y.-J.; Zhou, Y.-X.; Xue, B.; Han, Y.-C.; Wang, Y.-L.; Mu, X.-L.; Zang, S.-L.; Zhou, X.-F.; Li, Z.-B. J. Mater. Chem. B 2019, 7, 1435.

    66. [66]

      Yu, G.-C.; Tang, G.-P.; Huang, F.-H. J. Mater. Chem. C 2014, 2, 6609.  doi: 10.1039/C4TC01022A

    67. [67]

      Yu, G.-C.; Wu, D.; Li, Y.; Zhang, Z.-H.; Shao, L.; Zhou, J.; Hu, Q.-L.; Tang, G.-P.; Huang, F.-H. Chem. Sci. 2016, 7, 3017.  doi: 10.1039/C6SC00036C

    68. [68]

      Yu, G.-C.; Zhao, R.; Wu, D.; Zhang, F.-W.; Shao, L.; Zhou, J.; Yang, J.; Tang, G.-P.; Chen, X.-Y.; Huang, F.-H. Polym. Chem.-UK 2016, 7, 6178.  doi: 10.1039/C6PY01402J

    69. [69]

      Wang, Y.; Lv, M.-Z.; Song, N.; Liu, Z.-J.; Wang, C.-Y.; Yang, Y.-W. Macromolecules 2017, 50, 5759.  doi: 10.1021/acs.macromol.7b01010

    70. [70]

      Zhang, C.-W.; Jiang, S.-T.; Yin, G.-Q.; Li, X.; Zhao, X.-L.; Yang, H.-B. Isr. J. Chem. 2018, 58, 1265.  doi: 10.1002/ijch.201800062

    71. [71]

      Li, X.-S.; Han, J.-Y.; Qin, J.-C.; Sun, M.; Wu, J, -R.; Lei, L.-C.; Li, J.; Fang, L.; Yang, Y.-W. Chem. Commun. 2019, 55, 14099.  doi: 10.1039/C9CC07115F

    72. [72]

      Chi, X.-D.; Zhang, H.-C.; Vargas-Zúñ iga, G. I.; Peters, G. M.; Sessler, J. L. J. Am. Chem. Soc. 2016, 138, 5829.  doi: 10.1021/jacs.6b03159

    73. [73]

      Gao, J.; Guo, D.-S. Sci. Sin.:Chim. 2019, 49, 811(in Chinese).
       

    74. [74]

      Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese).
       

    75. [75]

      Lou, X.-Y.; Yang, Y.-W. Adv. Opt. Mater. 2018, 6, 1800668.  doi: 10.1002/adom.201800668

    76. [76]

      Li, Y.-W.; Ao, W.-T.; Jin, H.-L.; Cao, L.-P. Prog. Chem. 2019, 31, 121(in Chinese).
       

    77. [77]

      Li, B.; He, T.; Shen, X.; Tang, D.-T.; Yin, S.-C. Polym. Chem.-UK 2019, 10, 796.  doi: 10.1039/C8PY01396A

    78. [78]

      Chen, H.; Li, M.-H. Chin. J. Polym. Sci. 2019, 37, 352.  doi: 10.1007/s10118-019-2204-5

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    8. [8]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    18. [18]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    19. [19]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(138)
  • Abstract views(4857)
  • HTML views(1975)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return