Citation: Wang Su, Zhang Youlu, Ba Yanyan, Zhang Jingyu, Sun Demei. Study and Applications of Stereoselective Olefin Metathesis Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2725-2741. doi: 10.6023/cjoc202003054 shu

Study and Applications of Stereoselective Olefin Metathesis Reactions

  • Corresponding author: Sun Demei, muzhi527@163.com
  • Received Date: 23 March 2020
    Revised Date: 10 May 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the Science & Technology Innovation Talents of Henan University of Chinese Medicine (No. 2014XCXRC01) and the Henan University of Chinese Medicine, Provincial Scientific Research Business (No. 2014KYYWF-ZZCX3-05)the Henan University of Chinese Medicine, Provincial Scientific Research Business 2014KYYWF-ZZCX3-05the Science & Technology Innovation Talents of Henan University of Chinese Medicine 2014XCXRC01

Figures(27)

  • Olefin metathesis has been one of the most important methods to construct carbon-carbon double bonds, which has been catalyzed by ruthenium carbene. Investigations in olefin metathesis have focused on stereoselective transformations in recent years. The research progress on the applications of stereoselective olefin metathesis reactions catalyzed by ruthenium carbene complexes is reviewed. The advancements in stereoselectivity of olefin metathesis are described in detail, and the categories and improvement of ruthenium catalysts are also introduced over the past decade. Finally, the future development for olefin metathesis is further evaluated as well.
  • 加载中
    1. [1]

      Jean-Louis, H. P.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.  doi: 10.1002/macp.1971.021410112

    2. [2]

      Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693.  doi: 10.1021/ja210225e

    3. [3]

      Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 94.  doi: 10.1021/ja311241q

    4. [4]

      Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 1276.  doi: 10.1021/ja311916m

    5. [5]

      Ahmed, T. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2017, 56, 11213.  doi: 10.1002/anie.201704670

    6. [6]

      Khan, R. K. M.; Zhugralin, A. R.; Torker, S.; O'Brien, R. V.; Lombardi, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 12438.  doi: 10.1021/ja3056722

    7. [7]

      Khan, R. K. M.; O'Brien, R. V.; Torker, S.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 12774.  doi: 10.1021/ja304827a

    8. [8]

      Hartung, J.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 10183.  doi: 10.1021/ja4046422

    9. [9]

      Luo, S. X.; Cannon, J. S.; Taylor, B. L. H.; Engle, K. M.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2016, 138, 14039.  doi: 10.1021/jacs.6b08387

    10. [10]

      Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 9686.  doi: 10.1021/ja203488e

    11. [11]

      Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.  doi: 10.1021/ja202818v

    12. [12]

      Bronner, S. M.; Herbert, M. B.; Patel, P. R.; Marx, V. M.; Grubbs, R. H. Chem. Sci. 2014, 5, 4091.  doi: 10.1039/C4SC01541J

    13. [13]

      Cannon, J. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2013, 52, 9001.  doi: 10.1002/anie.201302724

    14. [14]

      Quigley, B. L.; Grubbs, R. H. Chem. Sci. 2014, 5, 501.  doi: 10.1039/C3SC52806E

    15. [15]

      Herbert, M. B.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2015, 54, 2.  doi: 10.1002/anie.201410932

    16. [16]

      Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. Nature 2015, 517, 181.  doi: 10.1038/nature14061

    17. [17]

      Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Lühl, A.; Blechert, S. Angew. Chem.. Int. Ed. 2010, 49, 3972.  doi: 10.1002/anie.201000940

    18. [18]

      Miyazaki, H.; Herbert, M. B.; Liu, P.; Dong, X.; Xu, X.; Keitz, B. K.; Ung, T.; Mkrtumyan, G.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 5848.  doi: 10.1021/ja4010267

    19. [19]

      Johns, A. M.; Ahmed, T. S.; Jackson, B. W.; Grubbs, R. H.; Pederson, R. L. Org. Lett. 2016, 18, 772.  doi: 10.1021/acs.orglett.6b00031

    20. [20]

      Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2017, 56, 11024.  doi: 10.1002/anie.201704686

    21. [21]

      Khan, R. K. M.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2013, 135, 10258.  doi: 10.1021/ja404208a

    22. [22]

      Ahmed, T. S.; Grubbs, R. H. J. Am. Chem. Soc. 2017, 139, 1532.  doi: 10.1021/jacs.6b11330

    23. [23]

      Ahmed, T. S.; Grubbs, R. H. J. Am. Chem. Soc. 2017, 139, 1532.  doi: 10.1021/jacs.6b11330

    24. [24]

      Xu, C. F.; Shen, X.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 10919.  doi: 10.1021/jacs.7b06552

    25. [25]

      Xu, C. F.; Liu, Z. X.; Torker, S.; Shen, X.; Xu, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 15640.  doi: 10.1021/jacs.7b10010

    26. [26]

      Ahmed, T. S.; Montgomery, T. P.; Grubbs, R. H. Chem. Sci. 2018, 9, 3580.  doi: 10.1039/C8SC00435H

    27. [27]

      Torker, S.; Khan, R. K. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 3439.  doi: 10.1021/ja410606b

    28. [28]

      Khan, R. K. M.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 14337.  doi: 10.1021/ja505961z

    29. [29]

      Mikus, M. S.; Torker, S.; Xu, C.; Li, B.; Hoveyda, A. H. Organometallics 2016, 35, 3878.  doi: 10.1021/acs.organomet.6b00773

    30. [30]

      Montgomery, T. P.; Grandner, J. M.; Houk, K. N.; Grubbs, R. H. Organometallics 2017, 36, 3940.  doi: 10.1021/acs.organomet.7b00555

    31. [31]

      Dumas, A.; Müller, D. S.; Curbet, I.; Toupet, L.; Rouen, M.; Baslé, O.; Mauduit, M. Organometallics 2018, 37, 829.  doi: 10.1021/acs.organomet.7b00836

    32. [32]

      Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.  doi: 10.1021/ol0165692

    33. [33]

      Stenne, B.; Timperio, J.; Savoie, J.; Dudding, T.; Collins, S. K. Org. Lett. 2010, 12, 2032.  doi: 10.1021/ol100511d

    34. [34]

      Gawin, R.; Pieczykolan, M.; Malinska, M.; Wozniak, K.; Grela, K. Synlett 2013, 24, 1250.  doi: 10.1055/s-0033-1338877

    35. [35]

      Paradiso, V.; Bertolasi, V.; Grisi, F. Organometallics 2014, 33, 5932.  doi: 10.1021/om500731k

    36. [36]

      Paradiso, V.; Bertolasi, V.; Costabile, C.; Grisi, F. Dalton Trans. 2016, 45, 561.  doi: 10.1039/C5DT03758A

    37. [37]

      Hartung, J.; Dornan, P. K.; Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 13029.  doi: 10.1021/ja506611k

    38. [38]

      Kannenberg, A.; Rost, D.; Eibauer, S.; Tiede, S.; Blechert, S. Angew. Chem.. Int. Ed. 2011, 50, 3299.  doi: 10.1002/anie.201007673

    39. [39]

      Hartung, J.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2014, 53, 3885.  doi: 10.1002/anie.201310767

    40. [40]

      Berlin, J. M.; Goldberg, S. D.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2006, 45, 7591.  doi: 10.1002/anie.200602469

    41. [41]

      Werrel, S.; Walker, J. C. L.; Donohoe, T. J. Tetrahedron Lett. 2015, 56, 5261.  doi: 10.1016/j.tetlet.2015.07.008

    42. [42]

      Montgomery, T. P.; Johns, A. M.; Grubbs, R. H. Catalysts 2017, 7, 87.  doi: 10.3390/catal7030087

    43. [43]

      Ogba, O. M.; Warner, N. C.; O'Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510.  doi: 10.1039/C8CS00027A

    44. [44]

      Potukuchi, H. K.; Colomer, I.; Donohoe, T. J. Adv. Heterocycl. Chem. 2016, 120, 43.  doi: 10.1016/bs.aihch.2016.04.006

    45. [45]

      Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. Angew. Chem.. Int. Ed. 2010, 49, 34.  doi: 10.1002/anie.200904491

    46. [46]

      Donohoe, T. J.; Jones, C. R.; Barbosa, L. C. A. J. Am. Chem. Soc. 2011, 133, 16418.  doi: 10.1021/ja207835w

    47. [47]

      Song, W.; Wang, Y.; Qu, J.; Lin, Q. J. Am. Chem. Soc. 2008, 130, 9654.  doi: 10.1021/ja803598e

    48. [48]

      Van Hest, J. C. M.; Kiick, K. L.; Tirrell, D. A. J. Am. Chem. Soc. 2000, 122, 1282.  doi: 10.1021/ja992749j

    49. [49]

      Bernardes, G. J. L.; Chalker, J. M.; Errey, J. C.; Davis, B. G. J. Am. Chem. Soc. 2008, 130, 5052.  doi: 10.1021/ja800800p

    50. [50]

      Lin, Y. A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R. S.; Davis, B. G. J. Am. Chem. Soc. 2013, 135, 12156.  doi: 10.1021/ja403191g

    51. [51]

      Zhu, Y.; van der Donk, W. A. Org. Lett. 2001, 3, 1189.  doi: 10.1021/ol015648a

    52. [52]

      Mangold, S. L.; O'Leary, D. J.; Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 12469.  doi: 10.1021/ja507166g

    53. [53]

      Mangold, S. L.; Grubbs, R. H. Chem. Sci. 2015, 6, 4561.  doi: 10.1039/C5SC01507C

    54. [54]

      Silverstein, R. M.; Brownlee, R. G.; Bellas, T. E.; Wood, D. L.; Browne, L. E. Science 1968, 159, 889.  doi: 10.1126/science.159.3817.889

    55. [55]

      Henrick, C. A. Tetrahedron 1977, 33, 1845.  doi: 10.1016/0040-4020(77)80372-4

    56. [56]

      Ortiz, A.; Quesada, A.; Sanchez, A. J. Chem. Ecol. 2004, 30, 991.  doi: 10.1023/B:JOEC.0000028463.43564.40

    57. [57]

      Howse, P. E.; Stevens, I. D. R.; Jones, O. T. Insect Pheromones and their Use in Pest Management, Springer, Dordrecht, Netherlands, 1998.

    58. [58]

      Herbert, M. B.; Marx, V. M.; Pederson, R. L.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2013, 52, 310.  doi: 10.1002/anie.201206079

    59. [59]

      Ando, T.; Inomata, S.; Yamamoto, M. In Topics in Current Chemistry, Ed.: Schulz, S., Springer, Berlin/Heidelberg, 2004, pp. 51~96.

    60. [60]

      Ciminiello, P.; Fattorusso, E.; Forino, M.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Org. Chem. 2001, 66, 578.  doi: 10.1021/jo001437s

    61. [61]

      Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Am. Chem. Soc. 2002, 124, 13114.  doi: 10.1021/ja0207347

    62. [62]

      Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Di Meglio, P.; Ianaro, A.; Poletti, R. Tetrahedron 2004, 60, 7093.  doi: 10.1016/j.tet.2003.12.072

    63. [63]

      Chung, W.; Carlson, J. S.; Bedke, D. K.; Vanderwal, C. D. Angew. Chem.. Int. Ed. 2013, 52, 10052.  doi: 10.1002/anie.201304565

    64. [64]

      Dornan, P. K.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2015, 54, 7134.  doi: 10.1002/anie.201501505

    65. [65]

      Dornan, P. K.; Lee, D.; Grubbs, R. H. J. Am. Chem. Soc. 2016, 138, 6372.  doi: 10.1021/jacs.6b02653

    66. [66]

      Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem.. Int. Ed. 2014, 53, 1.  doi: 10.1002/anie.201310509

    67. [67]

      Wright, A. E.; Botelho, J. C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70, 412.  doi: 10.1021/np060597h

    68. [68]

      Youngsaye, W.; Lowe, J. T.; Pohlki, F.; Ralifo, P.; Panek, J. S. Angew. Chem.. Int. Ed. 2007, 46, 9211.  doi: 10.1002/anie.200704122

    69. [69]

      Custar, D. W.; Zabawa, T. P.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 804.  doi: 10.1021/ja710080q

    70. [70]

      Woo, S. K.; Kwon, M. S.; Lee, E. Angew. Chem.. Int. Ed. 2008, 47, 3242.  doi: 10.1002/anie.200800386

    71. [71]

      Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M. Angew. Chem.. Int. Ed. 2008, 47, 4737.  doi: 10.1002/anie.200801399

    72. [72]

      Paterson, I.; Miller, N. A. Chem. Commun. 2008, 4708.

    73. [73]

      Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700.  doi: 10.1021/ol902047z

    74. [74]

      Fuwa, H.; Saito, A.; Sasaki, M. A. Angew. Chem.. Int. Ed. 2010, 49, 3041.  doi: 10.1002/anie.201000624

    75. [75]

      Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem.. Int. Ed. 2015, 54, 215.  doi: 10.1002/anie.201409120

    76. [76]

      De Léséleuc, M.; Godin, É.; Parisien-Collette, S.; Lévesque, A.; Collins, S. K. J. Org. Chem. 2016, 81, 6750.  doi: 10.1021/acs.joc.6b01500

    77. [77]

      Zhang, B.; Wang, Y.; Yang, S. P.; Zhou, Y.; Wu, W. B.; Tang, W.; Zuo, J. P.; Li, Y.; Yue, J. M. I. J. Am. Chem. Soc. 2012, 134, 20605.  doi: 10.1021/ja310482z

    78. [78]

      Li, J. M.; Ahmed, T. S.; Xu, C.; Stoltz, B. M.; Grubbs, R. H. J. Am. Chem. Soc. 2019, 141, 154.  doi: 10.1021/jacs.8b12816

  • 加载中
    1. [1]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(57)
  • Abstract views(3533)
  • HTML views(1098)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return