Citation: Zhou Cong, Li Miao, Yu Jintao, Sun Song, Cheng Jiang. Recent Progress in the Carboxylation/Cyclization Reactions Using Carbon Dioxide as the C1 Source[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2221-2231. doi: 10.6023/cjoc202003039 shu

Recent Progress in the Carboxylation/Cyclization Reactions Using Carbon Dioxide as the C1 Source

  • Corresponding author: Sun Song, sunsong@cczu.edu.cn Cheng Jiang, chengjiang@cczu.edu.cn
  • Received Date: 15 March 2020
    Revised Date: 13 May 2020
    Available Online: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 21602019the Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology BM2012110the National Natural Science Foundation of China 21971025Project supported by the National Natural Science Foundation of China (Nos. 21602019, 21971025), the Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology (No. BM2012110) and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center

Figures(24)

  • Carbon dioxide is a readily available, low-cost, abundant, non-toxic C1 source, which can potentially serve as an ideal building block in synthetic chemistry. Recently, much progress, expecially multi-component reactions (MCRs) has been achieved in construction of carbonyl-containing heterocycles through annulation by using carbon dioxide as carbonyl/carboxyl source. Herein, the advances on the annulation reaction of atmospheric CO2 with N-, and O-nucleophiles for the constructioin of various carbonyl-containing heterocycles, including benzoxazin, cyclic carbamates, lactams, oxazolidine-2, 4-diones are reviewed. In addition, the carboxylation of C-nucleophiles with CO2 toward carboxylic acids is also summarized.
  • 加载中
    1. [1]

      Le Quere, C.; Andrew, R. M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P. A.; Korsbakken, J. I.; Peters, G. P.; Canadell, J. G.; Arneth, A.; Arora, V. K.; Barbero, L.; Bastos, A.; Bopp, L.; Chevallier, F.; Chini, L. P.; Ciais, P.; Doney, S. C.; Gkritzalis, T.; Goll, D. S.; Harris, I.; Haverd, V.; Hoffman, F. M.; Hoppema, M.; Houghton, R. A.; Hurtt, G.; Ilyina, T.; Jain, A. K.; Johannessen, T.; Jones, C. D.; Kato, E.; Keeling, R. F.; Goldewijk, K. K.; Landschutzer, P.; Lefevre, N.; Lienert, S.; Liu, Z.; Lombardozzi, D.; Metzl, N.; Munro, D. R.; Nabel, J. E. M. S.; Nakaoka, S.; Neill, C.; Olsen, A.; Ono, T.; Patra, P.; Peregon, A.; Peters, W.; Peylin, P.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Resplandy, L.; Robertson, E.; Rocher, M.; Rodenbeck, C.; Schuster, U.; Schwinger, J.; Seferian, R.; Skjelvan, I.; Steinhoff, T.; Sutton, A.; Tans, P. P.; Tian, H. Q.; Tilbrook, B.; Tubiello, F. N.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; Viovy, N.; Walker, A. P.; Wiltshire, A. J.; Wright, R.; Zaehle, S.; Zheng, B. Earth Syst. Sci. 2018, 10, 2141.  doi: 10.5194/essd-10-2141-2018

    2. [2]

      (a) Hulla, M.; Dyson, P. J. Angew. Chem., Int. Ed. 2020, 59, 1002.
      (b) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5492.
      (c) Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 3317.
      (d) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
      (e) Lu, X. Carbon Dioxide and Organometallics, Springer International Publishing, Switzerland, 2016.
      (f) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
      (g) Bhanage, B. M.; Arai, M. Transformation and Utilization of Carbon Dioxide, Springer-Verlag, Berlin, Heidelberg, 2014.
      (h) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395.
      (i) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.
      (j) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
      (k) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
      (l) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

    3. [3]

      (a) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
      (b) Hua, B.; Guild, C.; Suib, S. L. J. CO2 Util. 2013, 1, 18.

    4. [4]

      (a) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem.-Eur. J. 2012, 18, 5460.
      (b) Weibel, J.-M.; Blanc, A.; Pale, P. Chem. Rev. 2008, 108, 3149.

    5. [5]

      (a) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkovc, A. A.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
      (b) Liu, X.; He, L.-N. Top. Curr. Chem. 2017, 375, 21.
      (c) Zhang, Z.; Ju, T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741.
      (d) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524.

    6. [6]

      Wu, L.; Liu, Q.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 6310.  doi: 10.1002/anie.201400793

    7. [7]

      (a) Guo, C.-X.; Zhang, W.-Z.; Zhang, N.; Lu, X.-B. J. Org. Chem. 2017, 82, 7637.
      (b) Zhang, W.-Z.; Yang, M.-W.; Lu, X.-B. Green Chem. 2016, 18, 4181.
      (c) Zhang, W.-Z.; Yang, M.-W.; Yang, X.-T.; Shi, L.-L. Wang, H.-B.; Lu, X.-B. Org. Chem. Front. 2016, 3, 217.
      (d) Zhang, W.-Z.; Xia, T.; Yang, X.-T.; Lu, X.-B. Chem. Commun. 2015, 51, 6175.
      (e) Wang, Y.-B.; Wang, Y.-M.; Zhang, W.-Z.; Lu, X.-B. J. Am. Chem. Soc. 2013, 135, 11996.

    8. [8]

      (a) Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.
      (b) He, X.; Yao, X.-Y.; Chen, K.-H.; He, L.-N. ChemSusChem 2019, 12, 5081.
      (c) Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.
      (d) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
      (e) Wang, M.-Y.; Song, Q.-W.; Ma, R.; Xie, J.-N.; He, L.-N. Green Chem. 2016, 18, 282.
      (f) Xie, J.-N.; Yu, B.; Guo, C.-X.; He, L.-N. Green Chem. 2015, 17, 4061.

    9. [9]

      (a) Ouyang, L.; Tang, X.; He, H.; Qi, C.; Xiong, W.; Ren, Y.; Jiang, H. Adv. Synth. Catal. 2015, 357, 2556.
      (b) Qi, C.; Jiang, H.; Huang, L.; Yuan, G.; Ren, Y. Org. Lett. 2013, 13, 5520.
      (c) Zhao, J.; Huang, H.; Qi, C.; Jiang, H. Eur. J. Org. Chem. 2012, 5665.

    10. [10]

      (a) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem., Int. Ed. 2015, 54, 5399.
      (b) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648.

    11. [11]

      (a) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
      (b) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G.; Org. Lett. 2018, 20, 3776.
      (c) Zhang, Z.; Ju, T.; Miao, M.; Han, J.-L.; Zhang, Y.-H.; Zhu, X.-Y.; Ye, J.-H.; Yu, D.-G.; Zhi, Y.-G. Org. Lett. 2017, 19, 396.
      (d) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.

    12. [12]

      (a) Sadamitsu, Y.; Komatsuki, K.; Saito, K.; Yamada, T. Org. Lett. 2017, 19, 3191.
      (b) Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013, 15, 848.
      (c) Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett. 2013, 15, 3710.
      (d) Kikuchi, S.; Sekine, K.; Ishida, T.; Yamada, T. Angew. Chem., Int. Ed. 2012, 51, 6989.

    13. [13]

    14. [14]

      (a) Miyashiro, J.; Woods, K. W.; Park, C. H.; Liu, X.; Shi, Y.; Johnson, E. F.; Bouska, J. J.; Olson, A. M.; Luo, Y.; Fry, E. H.; Giranda, V. L.; Penning, T. D. Bioorg. Med. Chem. Lett. 2009, 19, 4050.
      (b) Angibaud, P. R.; Venet, M. G.; Filliers, W.; Broeckx, R.; Ligny, Y. A.; Muller, P.; Poncelet, V. S.; End, D. W. Eur. J. Org. Chem. 2004, 479.

    15. [15]

      (a) Ferguson, M J.; Zeng, F.; Alwis, N.; Alper, H. Org. Lett. 2013, 15, 1998.
      (b) Liang, Z.; Zhang, J.; Liu, Z.; Wang, K.; Zhang, Y. Tetrahedron 2013, 69, 6519.

    16. [16]

      (a) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 7068.
      (b) Wang, S.; Shao, P.; Du, G.; Xi, C. J. Org. Chem. 2016, 81, 6672.

    17. [17]

      Sun, S.; Hu, W.-M.; Gu, N.; Cheng, J. Chem.-Eur. J. 2016, 22, 18729.  doi: 10.1002/chem.201604256

    18. [18]

      (a) Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013, 15, 848.
      (b) Childers, W. E. Jr.; Baudy, R. B. J. Med. Chem. 2007, 50, 2557.

    19. [19]

      Wang, B.; Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Org. Lett. 2017, 19, 4319.  doi: 10.1021/acs.orglett.7b01989

    20. [20]

      (a) Pastore, V.; Sabatier, L.; Enrique, A.; Marder, M.; Bruno-Blanch, L. E. Bioorg. Med. Chem. 2013, 21, 841.
      (b) Heerding, D. A.; Christmann, L. T.; Clark, T. J.; Holmes, D. J.; Rittenhouse, S. F.; Takata, D. T.; Venslavsky, J. W. Bioorg. Med. Chem. Lett. 2003, 13, 3771.

    21. [21]

      (a) Zhou, H.; Mu, S.; Ren, B.-H.; Zhang, R.; Lu, X.-B. Green Chem. 2019, 21, 991.
      (b) Chen, G.; Fu, C.; Ma, S. Org. Biomol. Chem. 2011, 9, 105.

    22. [22]

      Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685.  doi: 10.1039/C9CC07027C

    23. [23]

      (a) Yin, Z.; Ye, J.; Zhou, W.; Zhang, Y.; Ding, L.; Gui, Y.; Yan, S.; Li, J.; Yu, D. Org. Lett. 2018, 20, 190.
      (b) Sun, L.; Ye, J.; Zhou, W.; Zeng, X.; Yu, D. Org. Lett. 2018, 20, 3049.

    24. [24]

      (a) Commons, T. J.; Jenkins, D. J.; Trybulski, E. J.; Fensome, A. US 20090197878, 2009.
      (b) Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P.; Miller, L.; Winneker, R. C.; Zhang, Z.; Zhu, Y.; Cohen, J. Bioorg. Med. Chem. Lett. 2004, 14, 2185.

    25. [25]

      (a) Zhao, Y.; Huang, B.; Yang, C.; Chen, Q.; Xia, W. Org. Lett. 2016, 18, 5572.
      (b) Hernandez, E.; Velez, J. M.; Vlaar, C. P. Tetrahedron Lett. 2007, 48, 8972.
      (c) Lagu, B.; Pio, B.; Lebedev, R.; Yang, M.; Pelton, P. D. Bioorg. Med. Chem. Lett. 2007, 17, 3497.

    26. [26]

      Sun, S.; Zhou, C.; Dong, Y.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579.  doi: 10.1021/acs.orglett.9b02700

    27. [27]

      Xiong, H.; Wu, X.; Wang, H.; Sun, S.; Yu, J.; Cheng, J. Adv. Synth. Catal. 2019, 361, 3538.  doi: 10.1002/adsc.201900341

    28. [28]

      Frantz, M.-C.; Rodrigo, J.; Boudier, L.; Durroux, T.; Mouillac, B.; Hibert, M. J. Med. Chem. 2010, 53, 1546.
      (b) Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P.; Miller, L.; Winneker, R. C.; Zhang, Z.; Zhu, Y.; Cohen, J. Bioorg. Med. Chem. Lett. 2004, 14, 2185.

    29. [29]

      Xia, M.; Hu, W.; Sun, S.; Yu, J.-T.; Cheng, J. Org. Biomol. Chem. 2017, 15, 4064.  doi: 10.1039/C7OB00777A

    30. [30]

      (a) Holtwick, J. B.; Leonard, N. J. J. Org. Chem. 1981, 46, 3681.
      (b) Holtwick, J. B.; Golankiewicz, B.; Holmes, B. N.; Leonard, N. J. J. Org. Chem. 1979, 44, 3835.

    31. [31]

      (a) Kahveci, B.; Yilmaz, F.; Mentese, E.; Ulker, S. Chem. Heterocycl. Compd. 2015, 51, 447.
      (b) Han, S.; Zhang, F.-F.; Xie, X.; Chen, J.-Z. Eur. J. Med. Chem. 2014, 74, 73.

    32. [32]

      Wu, X.; Sun, S.; Wang, B.; Cheng, J. Adv. Synth. Catal. 2017, 359, 3855.  doi: 10.1002/adsc.201700869

    33. [33]

      Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310.  doi: 10.1002/anie.201608628

    34. [34]

      Kane, J. M.; Baron, B. M.; Dudley, M. W.; Sorensen, S. M.; Staeger, M. A.; Miller, F. P. J. Med. Chem. 1990, 33, 2772.  doi: 10.1021/jm00172a015

    35. [35]

      (a) Sharma, M. C.; Sharma, S.; Sharma, P.; Kumar, A.; Bhadoriya, K. S. Med. Chem. Res. 2014, 23, 2486.
      (b) Pai, N. R.; Dubhashi, D. S.; Pusalkar, D. A. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 180.

    36. [36]

      (a) Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.
      (b) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc. 2010, 132, 4072.
      (c) Kayaki, Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 419.
      (d) Jiang, H.-F.; Wang, A.-Z.; Liu, H.-L.; Qi, C.-R. Eur. J. Org. Chem. 2008, 2309.

    37. [37]

      (a) Sun, S.; Wang, B.; Gu, N.; Yu, J.-T.; Cheng, J. Org. Lett. 2017, 19, 1088.
      (b) Iritani, K.; Yanagihara, N.; Utimoto, K. J. Org. Chem. 1986, 51, 5499.

    38. [38]

      (a) León, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221.
      (b) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.

    39. [39]

      Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Adv. Synth. Catal. 2015, 357, 2022.  doi: 10.1002/adsc.201500101

    40. [40]

      (a) Windsor, M. A.; Hermanson, D. J.; Kingsley, P. J.; Xu, S.; Crews, B. C.; Ho, W.; Keenan, C. M.; Banerjee, S.; Sharkey, K. A.; Marnett, L. J. ACS Med. Chem. Lett. 2012, 3, 759.
      (b) Zhu, S.-F.; Yu, Y.-B.; Li, S.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 8872.
      (c) Hu, W.; Chen, C.-C.; Xue, G.; Chan, A. S. C. Tetrahedron: Asymmetry 1998, 9, 4183.

    41. [41]

      Stemke, J. E.; Chamberlin, A. R.; Bond, F. T. Tetrahedron Lett. 1976, 17, 2947.  doi: 10.1016/S0040-4039(01)85496-4

    42. [42]

      Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. J. Org. Chem. 2015, 80, 2855.  doi: 10.1021/jo502908v

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(86)
  • Abstract views(3797)
  • HTML views(1153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return