Citation: Guo Xin, Guo Yajun, Kong Dezhi, Lu Huijie, Hua Yuanzhao, Wang Mincan. Efficient Synthesis of Tetrahydrofuran Spirooxindoles via One-Pot Reaction[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1999-2007. doi: 10.6023/cjoc202003029 shu

Efficient Synthesis of Tetrahydrofuran Spirooxindoles via One-Pot Reaction

  • Corresponding author: Hua Yuanzhao, hyzhao@zzu.edu.cn Wang Mincan, wangmincan@zzu.edu.cn
  • Received Date: 11 March 2020
    Revised Date: 20 April 2020

    Fund Project: Education Department of Henan Province 17B150014Education Department of Henan Province 18B150028National Natural Science Foundation of China 21272216the China Postdoctoral Science Foundation 2017M622361National Natural Science Foundation of China (No. 21871237), the China Postdoctoral Science Foundation (No: 2017M622361) and the Education Department of Henan Province (Nos. 17B150014, 18B150028).

Figures(3)

  • A one-pot reaction of Michael/hemiketalization and Fridel-Crafts reaction of α-hydroxy aryl ketones and β, γ-unsaturated α-ketoamides has been developed. The process enables efficient synthesis of tetrahydrofuran spirooxindoles using chain substrates that do not contain oxindole and tetrahydrofuran skeletons. A spiro-carbon center, an oxindole ring and a tetrahydrofuran ring, are constructed in this process.
  • 加载中
    1. [1]

      (a) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175.
      (b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
      (c) Zheng, Y. J.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
      (d) Yu, B.; Yu, D. Q.; Liu, H. M. Eur. J. Med. Chem. 2015, 97, 673.
      (e) Ye, N.; Chen, H.; Wold, E. A.; Shi, P.-Y.; Zhou, J. ACS Infect. Dis. 2016, 2, 382.
      (f) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.

    2. [2]

      (a) Peddibhotla, S. Curr. Bioact. Compd. 2009, 5, 20.
      (b) Cui, B.-D.; Zuo, J.; Zhao, J.-Q.; Zhou, M.-Q.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2014, 79, 5305.

    3. [3]

      ( a) Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902.
      (b) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.
      (c) Crosignani, S.; Jorand-Lebrun, C.; Page, P.; Campbell, G.; Colovray, V.; Missotten, M.; Humbert, Y.; Cleva, C.; Arrighi, J.-F.; Gaudet, M.; Johnson, Z.; Ferro, P.; Chollet, A. ACS Med. Chem. Lett. 2011, 2, 644.
      (d) Rana, S.; Natarajan, A. Org. Biomol. Chem. 2013, 11, 244.

    4. [4]

      Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129, 1020.  doi: 10.1021/ja067552n

    5. [5]

      Ghosh, A.; Carter, R. G. Angew. Chem., Int. Ed. 2019, 58, 681.  doi: 10.1002/anie.201807509

    6. [6]

      (a) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem. 2006, 71, 2346.
      (b) Li, J.; Liu, Y. J.; Li, C. J.; Jia, X. Chem.-Eur. J. 2011, 17, 7409.
      (c) Hanhan, N. V.; Jones, N. R.; Tran, N. T.; Franz, A. K. Angew. Chem., Int. Ed. 2012, 51, 989.
      (d) Yang, L.; Xie, P.; Li, E.; Li, X.; Huang, Y.; Chen, R. Org. Biomol. Chem. 2012, 10, 7628.
      (e) Lian, Z.; Shi, M. Eur. J. Org. Chem. 2012, 2012, 581.
      (f) Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544.
      (g) Tang, Z.; Liu, Z.; An, Y.; Jiang, R.; Zhang, X.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2016, 81, 9158.
      (h) Silvi, M.; Chatterjee, I.; Liu, Y.-K.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780.
      (i) Zhao, B.-L.; Du, D.-M. Adv. Synth. Catal. 2016, 358, 3992.
      (j) Zhu, Y.-S.; Wang, W.-B.; Yuan, B.-B.; Li, Y.-N.; Wang, Q.-L.; Bu, Z.-W. Org. Biomol. Chem. 2017, 15, 984.
      (k) Zhang, J.-H.; Wang, R.-B.; Li, D.-F.; Zhao, L.-M. ACS Omega 2017, 2, 7022.

    7. [7]

      (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.
      (b) Jones, K.; Wilkinson, J. Chem. Commun. 1992, 1767.
      (c) Overman, L. E.; Rosen, M. D. Angew. Chem., Int. Ed. 2000, 39, 4596.
      (d) Kyei, A. S.; Tchabanenko, K.; Baldwin, J. E.; Adlington, R. M. Tetrahedron Lett. 2004, 45, 8931.
      (e) Jaegli, S.; Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.; Vors, J.-P.; Neuville, L.; Zhu, J.-P. Org. Lett. 2010, 12, 4498.
      (f) Yin, B.-L.; Lai, J.-Q.; Zhang, Z.-R.; Jiang, H.-F. Adv. Synth. Catal. 2011, 353, 1961.

    8. [8]

    9. [9]

      (a) Song, X.; Liu, J.; Liu, M.-M.; Wang, X.; Zhang, Z.-F.; Wang, M.-C.; Chang, J. Tetrahedron 2014, 70, 5468.
      (b) Hua, Y.-Z.; Liu, M.-M.; Huang, P.-J.; Song, X.; Wang, M.-C.; Chang, J.-B. Chem.-Eur. J. 2015, 21, 11994.
      (c) Tao, B.-K.; Yang, H.; Hua, Y.-Z.; Wang, M.-C. Org. Biomol. Chem. 2019, 17, 4301.
      (d) Miao, Y.-H.; Hua, Y.-Z.; Wang, M.-C. Org. Biomol. Chem. 2019, 17, 7172.
      (e) Liu, M.-M.; Yang, X.-C.; Hua, Y.-Z.; Chang, J.-B.; Wang, M.-C. Org. Lett. 2019, 21, 7089.
      (f) Yi, Y.; Hua, Y.-Z.; Lu, H.-J.; Liu, L.-T.; Wang, M.-C. Org. Lett. 2020, 22, 2527.
      (g) Liu, M.-M.; Yang, X.-C.; Hua, Y.-Z.; Chang, J.-B.; Wang, M.-C. Org. Lett. 2019, 21, 2111.
      (h) Yang, X.-C.; Liu, M.-M.; Mathey, F.; Yang, H.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem. 2019, 84, 7762.

    10. [10]

      Guo, Y.-J.; Guo, X.; Kong, D.-Z.; Lu, H.-J.; Liu, L.-T.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem., 2020, 85, 4195. The minor diastereomers in this article are obtained in 23%~44% isolated yields with about 1:1dr value in the current study.  doi: 10.1021/acs.joc.9b03378

    11. [11]

      CCDC 1987133(5') contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

  • 加载中
    1. [1]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    2. [2]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    3. [3]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    4. [4]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    5. [5]

      Chun-Ying XuXiao-Lin LuanYuan-Yuan CuiCheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937

    6. [6]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    7. [7]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    8. [8]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    9. [9]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    10. [10]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    11. [11]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    12. [12]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    13. [13]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    14. [14]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    15. [15]

      Xueying ShiXiaoxuan ZhouBing XiaoHongxia XuWei ZhangHongjie HuShiqun ShaoZhuxian ZhouYouqing ShenXiaodan XuJianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178

    16. [16]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    17. [17]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    18. [18]

      Wen-Wen XuYue-Xiu QinXiao-Yong YuLin-Nan JiangHeng-Yi ZhangYong ChenYu Liu . Multipath cascade light harvesting for multicolor luminescence based on macrocyclic sulfonatocalix[4]arene. Chinese Chemical Letters, 2025, 36(11): 111068-. doi: 10.1016/j.cclet.2025.111068

    19. [19]

      Yu-Chen FangJia-He ChenMi-Zhuan LiHui-Min LiMei BaiYong-Zheng ChenZi-Wei GaoWen-Yong Han . Forging of silaoxycarbocyclics by interrupted Catellani reaction. Chinese Chemical Letters, 2025, 36(7): 110474-. doi: 10.1016/j.cclet.2024.110474

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(8)
  • Abstract views(1160)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return