Citation: Zheng Kanghe, Zhou Bingwei, Jin Hongwei, Liu Yunkui. Bifunctional Phosphine Ligand-Enabled Gold(Ⅰ)-Catalyzed Efficient Synthesis of 1, 5-Benzodiazepines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2520-2525. doi: 10.6023/cjoc202003024 shu

Bifunctional Phosphine Ligand-Enabled Gold(Ⅰ)-Catalyzed Efficient Synthesis of 1, 5-Benzodiazepines

  • Corresponding author: Liu Yunkui, ykuiliu@zjut.edu.cn
  • Received Date: 9 March 2020
    Revised Date: 28 May 2020
    Available Online: 8 June 2020

    Fund Project: The Natural Science Foundation of Zhejiang Province LY20B020013Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), and the Natural Science Foundation of Zhejiang Province(No. LY20B020013)The National Natural Science Foundation of China 21372201The National Natural Science Foundation of China 21772176

Figures(2)

  • At room temperature, a bifunctional phosphine-gold(Ⅰ) catalyst was used to catalyze the nucleophilic addition/cyclization reaction of o-phenylenediamines with alkynes to generate 1, 5-benzodiazepines in one step. The reaction has the advantages of high atomic-economy, simple raw materials, convenient operation and mild reaction conditions.
  • 加载中
    1. [1]

      (a) Randall, L. O.; Kappel, B. In Benzodiazepines, Eds.: Garattini, S.; Mussini, E.; Randall, L. O., Raven Press, New York, 1973, p. 27.
      (b) Smalley, R. K. In Comprehensive Organic Chemistry, Eds.: Barton, D.; Ollis, W. D., Pergamon, Oxford, 1979, Vol. 4, p. 600.
      (c) Schutz, H. Benzodiazepines, Springer, Heidelberg, 1982.
      (d) Landquist, J. K. In Comprehensive Heterocyclic Chemistry, Eds.: Katritzky, A. R.; Rees, C. W., Pergamon, Oxford, 1984, Vol. 1, pp. 166~170.

    2. [2]

    3. [3]

      Fad, L. D.; Bethell, R.; Bonneau, P.; Bös, M.; Bousquet, Y.; Coordingley, M. G.; Coulombe, R.; Deroy, P.; Faucher, A.-M.; Gagnon, A.; Goudreau, N.; Grand-Maî tre, C.; Guse, I.; Hucke, O.; Kawai, S. H.; Lacoste, J.-E.; Landry, S.; Lemke, C. T.; Malenfant, E.; Mason, S.; Morin, S.; O'Meara, J.; Simoneau, B.; Titolo, S.; Yoakim, C. Bioorg. Med. Chem. Lett. 2011, 21, 398.  doi: 10.1016/j.bmcl.2010.10.131

    4. [4]

      (a) El-snyed, A. M.; Abdel-ghany, H.; El-snghier, A. M. M. Synth. Commun. 1999, 29, 3561.
      (b) Essaber, M.; Baouid, A.; Hasnaoui, A.; Benharref, A.; Lavergne, J. P. Synth. Commun. 1998, 28, 4097.
      (c) Reddy, K. V. V; Rao, P. S.; Ashok, D. Synth. Commun. 2000, 30, 1825.

    5. [5]

      (a) Pan, X.Q.; Zou, J. P.; Huang, Z. H.; Zhang, W. Tetrahedron Lett. 2008, 49, 5302.
      (b) Nardi, M.; Cozza, A.; Maiuolo, L.; Oliverio, M.; Procopio, A Tetrahedron Lett. 2011, 52, 4827 and references cited therein.
      (c) Feng, S.-E.; Xu, F.; Shen, Q. Chin. J. Chem. 2008, 26, 861.

    6. [6]

      Ried, W.; Torinus, E. Chem. Ber. 1959, 92, 2902.  doi: 10.1002/cber.19590921138

    7. [7]

      (a) Neochoritis, C. G.; Tsoleridis, C. A.; Sephanidou-Stephanatou, J.; Kontogiorgis, C. A.; Hadjipavlou-Litina, D. J. J. Med. Chem. 2010, 53, 8409.
      (b) Ha, S. K.; Shobha, D.; Moon, E.; Chari, M. A.; Mukkanti, K.; Kim, S. H.; Ahn, K. H.; Kim, S. Y. Bioorg. Med. Chem. Lett. 2010, 20, 3969.
      (c) Climent, M. J.; Corma, A.; Iborra, S.; Santos, L. L. Chem.-Eur. J. 2009, 15, 8834.

    8. [8]

      Maiti, G.; Kayal, U.; Karmakar, R.; Bhattacharya, R. N. Tetrahedron Lett. 2012, 53, 1460.  doi: 10.1016/j.tetlet.2012.01.036

    9. [9]

      Qian, J.; Liu, Y.; Cui, J.; Xu, Z. J. Org. Chem. 2012, 77, 4484.  doi: 10.1021/jo300543n

    10. [10]

      Guo, P.; Zeng, X.; Chen, S.; Luo, M. J. Organomet. Chem. 2014, 751, 438.  doi: 10.1016/j.jorganchem.2013.06.026

    11. [11]

      (a) Cai, R.; Ye, X.; Sun, Q.; He, Q.; He, Y.; Ma, S.; Shi, X. ACS Catal. 2017, 7, 1087.
      (b) Young, P. C.; Green, S. L. J.; Rosair, G. M.; Lee, A.-L. Dalton Trans. 2013, 42, 9645.

    12. [12]

      Chen, L.; Chen, K.; Zhu, S. Chem 2018, 4, 1208.  doi: 10.1016/j.chempr.2018.02.001

    13. [13]

      (a) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968.
      (b) Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.

    14. [14]

      (a) Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao, Z.; Zhang, L. Nat. Commun. 2014, 5, 3687.
      (b) Li, X.; Liao, S.; Wang, Z.; Zhang, L. Org. Lett. 2017, 19, 3687.
      (c) Wang, Z.; Hervieu, C.; Wong, Y.-F.; Zanoni, G.; Zhang, L. J. Am. Chem. Soc. 2017, 139, 16064.

    15. [15]

      (a) Liu, Y.; Qian, J.; Lou, S.; Xu, Z. J. Org. Chem. 2010, 75, 6300.
      (b) Liu, Y.; Qian, J.; Lou, S.; Zhu, J.; Xu, Z. J. Org. Chem. 2010, 75, 1309.
      (c) Liu, Y.; Zhu, J.; Qian, J.; Jiang, B.; Xu, Z. J. Org. Chem. 2011, 76, 9096.
      (d) Qian, J.; Liu, Y.; Zhu, J.; Jiang, B.; Xu, Z. Org. Lett. 2011, 13, 4220.
      (e) Liu, Y.; Zhu, J.; Qian, J.; Xu, Z. J. Org. Chem. 2012, 77, 5411.

    16. [16]

      Patil, V. D.; Patil, K. P.; Sutar, N. R.; Gidh, P. V. Heterocycl. Lett. 2016, 6, 61.
       

    17. [17]

      Jeganathan, M.; Pitchumani, K. ACS Sustainable Chem. Eng. 2014, 2, 1169.  doi: 10.1021/sc400560v

  • 加载中
    1. [1]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    16. [16]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    17. [17]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    18. [18]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

Metrics
  • PDF Downloads(4)
  • Abstract views(1594)
  • HTML views(231)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return