Citation: Zong Lingbo, Chen Jianbin, Ren Xinyi, Zhang Guoying, Jia Xiaofei. Progress in Application of Organic Polymers Supported Rhodium Catalysts in Hydroformylation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2308-2321. doi: 10.6023/cjoc202003006 shu

Progress in Application of Organic Polymers Supported Rhodium Catalysts in Hydroformylation

  • Corresponding author: Jia Xiaofei, jiaxiaofei139@163.com
  • Received Date: 3 March 2020
    Revised Date: 1 May 2020
    Available Online: 19 May 2020

    Fund Project: Open Fund of the Department of Chemistry, Qingdao University of Science and Technology QUSTHX202010Open Fund of the Department of Chemistry, Qingdao University of Science and Technology QUSTHX201932National Natural Science Foundation of China 21703116National Natural Science Foundation of China 51702180Project supported by the National Natural Science Foundation of China (Nos. 21703116, 51702180) and the Open Fund of the Department of Chemistry, Qingdao University of Science and Technology (Nos. QUSTHX201932, QUSTHX202010)

Figures(27)

  • Hydroformylation is considered one of the most important homogenously catalyzed processes in dustry. Hydroformylation has been widely used in the production of aldehydes, and aldehydes can also be further converted into high value-added alcohols, acids and other derivatives. Compared with the homogeneous reaction, the heterogeneous catalysts present significant advantages in terms of recyclability, separation of catalysts and products and so on. In recent years, organic polymer-supported rhodium catalysts have shown excellent catalytic activity, high selectivity, and good recycleability in heterogeneous hydroformylation, and have attracted widespread attention. The research progress of the application of organic polymer supported catalysts in hydroformylation is summarized, including synthesis, material characteristics and application of supported catalysts. Finally, the prospect of the reaction is discussed.
  • 加载中
    1. [1]

      (a) van Leeuwen, P. W. N. M.; Claver, C. Rhodium catalyzed hydroformylation, Kluwer Academic Publishers, Dordrecht, 2000.
      (b) Haumann, M.; Riisager, A. Chem. Rev. 2008, 108, 1474.
      (c) Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.
      (d) Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675.
      (e) Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 2852.

    2. [2]

      Roelen, O. U. S. 2327066, 1943[Chem. Abstr. 1944, 38, 363].

    3. [3]

      Börner, A.; Franke, R. Hydroformylation: Funda Mentals, Processes, and Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2016.

    4. [4]

      (a) Casey, C. P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Petrovich, L. M.; Matter, B. A.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 11817.
      (b) Herrmann, W. A.; Kohlpaintner, C. W.; Herdtweck, E.; Kiprof, P. Inorg. Chem. 1991, 30, 4271.
      (c) Yu, S.; Zhang, X.; Yan, Y.; Cai, C.; Dai, L.; Zhang, X. Chem. Eur. J. 2010, 16, 4938.
      (d) Yan, Y.; Zhang, X.; Zhang, X. Adv. Synth. Catal. 2007, 349, 1582.
      (e) Chen, C.; Li, P.; Hu, Z.; Wang, H.; Zhu, H.; Hu, X.; Wang, Y.; Lv, H.; Zhang, X. Org. Chem. Front. 2014, 1, 947.

    5. [5]

      Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M. Angew. Chem., Int. Ed. 2001, 40, 3408.

    6. [6]

      (a) Carbó, J. J.; Maseras, F.; Bo. C.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2001, 123, 7630.
      (b) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081.
      (c) Van der Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. J. Am. Chem. Soc. 1998, 120, 11616.
      (d) van der Veen, L. A.; Kamer, P. C. J.; van Leeu wen, P. W. N. M. Angew. Chem., Int. Ed. 1999, 38, 336.

    7. [7]

      Burke, P. M.; Garner, J. M.; Kreutzer, K. A.; Teunis sen, A. J. J. M.; Snijder, C. S.; Hansen, C. B. WO 97/33854, 1997.

    8. [8]

      (a) Cunny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 2066.
      (b) Behr, A.; Obst, D.; Schulte, C. J. Mol. Catal. A-Chem. 2003, 206, 179.

    9. [9]

      (a) van der Slot, S. C.; Duran, J.; Luten, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 2002, 21 3873.
      (b) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 16058.
      (c) Yu, S.; Chie, Y.; Guan, Z.; Zou, Y.; Li, W.; Zhang, X. Org. Lett. 2009, 11, 241.
      (d) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chem. Eur. J. 2012, 18, 15288.
      (e) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310.
      (f) Jia, X.; Ren, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2019, 39, 207(in Chinese)
      (贾肖飞, 任新意, 王正, 夏春谷, 丁奎岭, 有机化学, 2019, 39, 207.)
      (g) Chen, C.; Qiao, Y.; Geng, H.; Zhang, X. Org. Lett. 2013, 15, 1048.

    10. [10]

      (a) Li, C; Wang, W; Yan, L.; Ding, Y. Front. Chem. Sci. Eng. 2018, 12, 113.
      (b) Zhang, J.; Sun, P.; Zhao, Z. L.; Li, F. W. Chin. Sci. Bull. 2019, 64, 3173.

    11. [11]

      (a) Arhancet, J. P.; Davis, M. E.; Merola, J. S.; Hanson, B. E. Nature 1989, 339, 454.
      (b) Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M. Nature 1995, 373, 501.
      (c) Sharma, S. K.; Jasra, R. V. Catal. Today 2015, 247, 70.
      (d) Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, Compt. Rend. Chim. 2011, 14, 149.
      (e) Paganelli, S.; Piccolo, O.; Pontini, P.; Tassini, R.; Rathod, V. D. Catal. Today 2015, 247, 64.

    12. [12]

      (a) Horváth, I. T.; Kiss, G.; Cook, R. A., Bond, J. E.; Stevens, P. A.; Rábai, J.; Mozeleski, E. J. J. Am. Chem. Soc. 1998, 120, 3133.
      (b) Cornils, B. Angew. Chem., Int. Ed. 1997, 36, 2057.
      (c) Chen, W. P.; Xu, L. J.; Xiao, J. L. Chem. Commun. 2000, 10, 839.
      (d) Horvath, I. T.; Rabai, J. Science 1994, 266, 72.

    13. [13]

      (a) Mehnert, C. P.; Cook, R. A.; Dispenziere, N. C.; Afeworki, M. J. Am. Chem. Soc. 2002, 124, 12932.
      (b) Riisager, A.; Fehrmann, R.; Flicker, S.; van Hal, R.; Haumann, M.; Wasserscheid, P. Angew. Chem., Int. Ed. 2005, 44, 815.
      (c) Jin, X.; Feng, J.; Ma, Q.; Song, H.; Liu, Q.; Xu, B.; Zhang, M.; Li, S.; Yu, S. Green Chem. 2019, 21, 3267.
      (d) Walter, S.; Spohr, H.; Franke, R.; Hieringer, W.; Wasserscheid, P.; Haumann, M. ACS Catal. 2017, 7, 1035

    14. [14]

      (a) David, J.; Cole-Hamilton, O. J. Science 2003, 299, 1702.
      (b) Jessop, P. G.; Hsion, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.
      (c) Kainz, S., Koch, D.; Baumann, W.; Leitner, W. Angew. Chem., Int. Ed. 1997, 36, 1628.
      (d) Koeken, A. C. J.; Smeets, N. M. B. Catal. Sci. Technol. 2013, 3, 1036.
      (e) Estorach, C. T.; Orejon, A.; Masdeu-Bulto, A. M. Green Chem. 2008, 10, 545.

    15. [15]

      Gärtner, L.; Cornils, B.; Lappe, P. (to Ruhrchemie AG) EP 0107006, 1983[Chem. Abstr. 1984, 101, 55331].

    16. [16]

      (a) Kuntz, E. G. CHEMTECH 1987, 17, 570.
      (b) Cornils, B.; Kuntz, E. G. J. Organomet. Chem.1995, 502, 177.

    17. [17]

      Herrmann, W. A.; Kohlpaintner, C. W.; Bahrmann, H.; Konkol, W. J. Mol. Catal. 1992, 73, 191.

    18. [18]

      Bahmann, H.; Bergrath, K.; Kleiner, H.-J.; Lappe, P.; Naumann, C.; Peters, D.; Regnat, D. J. Organomet. Chem. 1996, 520, 97.

    19. [19]

      (a) Vunain, E.; Ncube, P.; Jalama, K.; Meijboom, R. J. Porous Mater. 2018, 25, 303.
      (b) Malihan, L. B.; Nisola, G. M.; Mittal, N.; Lee, S.-P.; Seo, J. G.; Kim, H.; Chung, W. J. RSC Adv. 2016, 6, 33901.
      (c) Sudheesh, N.; Parmar, J. N.; Shukla, R. S. Appl. Catal. A Gen. 2012, 415, 124.
      (d) Yan, L.; Ding, Y. J.; Lin, L. W.; Zhu, H. J.; Yin, H. M.; Li, X. M.; Lu, Y. J. Mol. Catal. A-Chem. 2009, 300, 116.

    20. [20]

      (a) Wolf, P.; Logemann, M.; Schorner, M.; Keller, L.; Haumann, M.; Wessling, M. RSC Adv. 2019, 9, 27732.
      (b) Weiss, A.; Munoz, M.; Haas, A.; Rietzler, F.; Steinruck, H.-P.; Haumann, M.; Wasserscheid, P.; Etzold, B. J. ACS Catal. 2016, 6, 2280.
      (c) Weiβ A.; Giese, M.; Lijewski, M.; Franke, R.; Wasserscheid, P.; Haumann, M. Catal. Sci. Technol. 2017, 7, 5562.

    21. [21]

      (a) Chuai, H. Y.; Su, P.; Liu, H.; Zhu, B.; Zhang, S.; Huang, W. Catalysts 2019, 9, 194.
      (b) Liu, J.; Yan, L.; Ding, Y.; Jiang, M.; Dong, W.; Song, X.; Liu, T.; Zhu, H. Appl. Catal. A Gen. 2015, 492, 127.

    22. [22]

      (a) Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 4051.
      (b) Nozaki, K.; Shibahara, F.; Itoi, Y.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 1911.

    23. [23]

      (a) Shibahara, F.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 8555.
      (b) Nozaki, K.; Shibahara, F.; Hiyama, T. Chem. Lett. 2000, 694.

    24. [24]

      (a) Stiriba, S. E.; Slagt, M. Q.; Kautz, H.; Klein Gebbink, R. J. M.; Thomann, R.; Frey, H.; van Koten, G. Chem. Eur. J. 2004, 10, 1267.
      (b) Kumar, K. R.; Kizhakkedathu, J. N.; Brooks, D. E. Macromol. Chem. Phys. 2004, 205, 567.
      (c) Wilms, D.; Stiriba, S. E.; Frey, H. Acc. Chem. Res. 2010, 43, 129.
      (d) Slagt, M. Q.; Stiriba, S.-E.; Kautz, H.; Klein Gebbink, R. J. M.; Frey, H.; van Koten, G. Organometallics 2004, 23, 1525.

    25. [25]

      Ricken, S.; Osinski, P. W.; Eilbracht, P.; Haag, R. J. Mol. Catal. A-Chem. 2006, 257, 78.

    26. [26]

      (a) Wang, H.; Sun, W.; Xia, C. J. Mol. Catal. A: Chem. 2003, 206, 199.
      (b) Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Appl. Catal. A Gen. 2011, 393, 231.
      (c) Hertrich, M. F.; Scharnagl, F. K.; Pews-Davtyan, A.; Kreyenschulte, C. R.; Lund, H.; Bartling, S.; Jackstell, R.; Beller, M. Chem.-Eur. J. 2019, 25, 5534.
      (d) Molnar, A. Coord. Chem. Rev. 2019, 388, 126.
      (e) Antony, R.; Arun, T.; Manickam, S. T. D. Int. J. Biol. Macromol. 2019, 129, 615.

    27. [27]

      Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Green Chem. 2012, 14, 338.

    28. [28]

      (a) Shifrina, Z. B.; Matveeva, V. G.; Bronstein, L. M. Chem. Rev. 2020, 120, 1350.
      (b) Kramer, S.; Bennedsen, N. R.; Kegnæs, S. ACS Catal. 2018, 8, 6961.
      (c) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
      (d) Kaur, P.; Hupp, J. T.; Nguyen, S. B. T. ACS Catal. 2011, 1, 819.

    29. [29]

      Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; Xiao, F.-S. Chem. Commun. 2014, 50, 11844.

    30. [30]

      Jiang, M.; Yan, L.; Ding, Y.; Sun, Q.; Liu, J.; Zhu, H.; Lin, R.; Xiao, F.; Jiang, Z.; Liu, J. J. Mol. Catal. A: Chem. 2015, 404, 211.

    31. [31]

      Sun, Q.; Aguila, B.; Verma, G.; Liu, X.; Dai, Z.; Deng, F.; Meng, X.; Xiao, F.-S.; Ma, S. Chem 2016, 1, 628.

    32. [32]

      Tang, Y.; Dong, K.; Wang, S.; Sun, Q.; Meng, X.; Xiao, F.-S. Mol. Catal. 2019, 474, 110408.

    33. [33]

      Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2015, 137, 5204.

    34. [34]

      Li, C.; Sun, K.; Wang, W.; Yan, L.; Sun, X.; Wang, Y.; Xiong, K.; Zhan, Z.; Jiang, Z.; Ding, Y. J. Catal. 2017, 353, 123.

    35. [35]

      Li, C.; Xiong, K.; Yan, L.; Jiang, M.; Song, X.; Wang, T.; Chen, X.; Zhan, Z.; Ding, Y. Catal. Sci. Technol. 2016, 6, 2143.

    36. [36]

      Wang, Y.; Yan, L.; Li, C.; Jiang, M.; Wang, W.; Ding, Y. Appl. Catal. A Gen. 2018, 551, 98.

    37. [37]

      Wang, Y.; Yan, L.; Li, C.; Jiang, M.; Zhao, Z.; Hou, G.; Ding, Y. J. Catal. 2018, 368, 197.

    38. [38]

      Jia, X.; Liang, Z.; Chen, J.; Lv, J.; Zhang, K.; Gao, M.; Zong, L.; Xie, C. Org. Lett. 2019, 21, 2147.

    39. [39]

      (a) Johnson, J. R.; Cuny, G. D.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1760.
      (b) Agabekov, V.; Seiche, W.; Breit, B. Chem. Sci. 2013, 4, 2418.
      (c) Fang, X.; Zhang, M.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 4645.
      (d) Zhang, Z.; Wang, Q.; Chen, C.; Han, Z.; Dong, X.; Zhang, X. Org. Lett. 2016, 18, 3290.

    40. [40]

      Liang, Z.; Chen, J.; Chen, X.; Zhang, K.; Lv, J.; Zhao, H.; Zhang, G.; Xie, C.; Zong, L.; Jia, X. Chem. Commun. 2019, 55, 13721.

    41. [41]

      Dong, K.; Sun, Q.; Tang, Y.; Shan, C.; Aguila, B.; Wang, S.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2019, 10, 3059.

    42. [42]

      Wang, T.; Wang, W.; Lyu, Y.; Xiong, K.; Li, C.; Zhang, H.; Zhan, Z.; Jiang, Z.; Ding, Y. Chin. J. Catal. 2017, 38, 691.

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(34)
  • Abstract views(3289)
  • HTML views(829)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return