Citation: Dai Hongxue, Wu Fen, Bai Dachang. Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1423-1436. doi: 10.6023/cjoc202002035 shu

Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions

  • Corresponding author: Bai Dachang, baidachang@htu.edu.cn
  • Received Date: 25 February 2020
    Revised Date: 3 April 2020
    Available Online: 13 April 2020

    Fund Project: the Start-Up Fund from Henan Normal University 2019QK01the Natural Science Research Program of Education Department of Henan Province 18A150010the Start-Up Fund from Henan Normal University qd17108the National Natural Science Foundation of China 21801067Project supported by the National Natural Science Foundation of China (No. 21801067), the Natural Science Research Program of Education Department of Henan Province (No. 18A150010) and the Start-Up Fund from Henan Normal University (Nos. qd17108, 2019QK01)

Figures(30)

  • Transition-metal catalyzed C-C bond cleavage reaction is one of the most challenge topics, and has drawn considerable attention in recent years. This process has not only emerged as a useful strategy for syntheses of complex molecular skeletons, but also satisfied atom economy. Compared to the noble transition metals catalysis such as Rh, Pd and Ir, the nickel catalysis offered a more cost effective option and exhibited unique activity or selectivity. This recent advances on the Ni-catalyzed C-C bond activations are summarized.
  • 加载中
    1. [1]

      Reviews: (a) Song, F.-J.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078.
      (b) Deng, L.; Jin, L.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 2702.
      (c) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
      (d) Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.-B. ACS Catal. 2017, 7, 1340.
      (e) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
      (f) Liu, H.; Feng, M.-H.; Jiang, X.-F. Chem.-Asian J. 2014, 9, 3360.
      (g) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610.
      (h) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
      (i) Liu, J.-Z.; Qiu, X.; Huang, X.-Q.; Luo, X.; Zhang, C.; Wei, J.-L.; Pan, J.; Liang, Y.-J.; Zhu, Y.-C.; Qin, Q.-X.; Son, S.; Jiao, N. Nat. Chem. 2019, 11, 94.
      (j) Sivaguru, P.; Wang, Z.-K.; Zanoni, G.; Bi, X.-H. Chem. Soc. Rev. 2019, 48, 2615.
      (k) Wu, X.-X.; Zhu, C. Chem. Rec. 2018, 18, 587.

    2. [2]

      (a) Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759.
      (b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
      (c) Li, T.-F.; Xu, F.; Li, X.-C.; Wang, C.-X.; Wan, B.-S. Angew. Chem., Int. Ed. 2016, 55, 2861.
      (d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
      (e) Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527.
      (f) Zhao, H.-P; Liang, G.-C.; Nie, S.-M.; Lu, X.; Pan, C.-X.; Zhong, X.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 404.

    3. [3]

      (a) Dai, P.-F.; Ning, X.-S.; Wang, H.; Cui, X.-C.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Angew. Chem., Int. Ed. 2019, 58, 5392.
      (b) Sun, T.-W.; Zhang, Y.-N.; Qiu, B.; Wang, Y.-F.; Qin, Y.-T.; Dong, G.-B.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859.
      (c) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem.-Eur. J. 2018, 24, 18863.
      (d) Liu, L.-T.; Guo, Z.-H.; Xu, K.; Hui, S.-S.; Zhao, X.-F.; Zhao, B.-L.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z.-Z. Chin. J Chem. 2018, 36, 995.
      (e) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.
      (f) Mao, W.-B.; Zhu, C. J. Org. Chem. 2017, 82, 9133.

    4. [4]

      Selected examples on nickel catalyzed C—C cleavage: (a) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889.
      (b) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.
      (c) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416.
      (d) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
      (e) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 67880.
      (f) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.
      (g) Jiang, L.-H.; Huang, F.; Wang, Q.; Sun, C.-Z.; Liu, J.-B.; Chen, D.-Z. Org. Chem. Front. 2018, 5, 2332.

    5. [5]

      (a) Wiberg, K.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2194.
      (b) Yu, S. J.; Noble, A.; Bedford, R. B.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 20325.

    6. [6]

      (a) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295.
      (b) Yang, Y.; Zhang, Z.; Zhang, X.; Wang, D.; Wei, Y.; Shi, M. Chem. Commun. 2014, 50, 115.
      (c) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 778.

    7. [7]

      Noyori, R.; Umeda, I.; Takaya H. Chem. Lett. 1972, 1, 1189.  doi: 10.1246/cl.1972.1189

    8. [8]

      (a) Baba, A.; Ohshiro, Y.; Agawa, T. Chem. Lett. 1976, 5, 11.
      (b) Baba, A.; Ohshiro, Y.; Agawa. T. J. Organomet. Chem. 1976, 110, 121.

    9. [9]

      Zhao, W.-T.; Gao, F.; Zhao, D.-B. Angew. Chem., Int. Ed. 2018, 57, 6329.  doi: 10.1002/anie.201803156

    10. [10]

      Huang, J. Q.; Ho, C. Y. Angew. Chem., Int. Ed. 2019, 58, 5702.  doi: 10.1002/anie.201901255

    11. [11]

      (a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780.
      (b) Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018.
      (c) Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 362, 478.

    12. [12]

      (a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540.
      (b) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114.
      (c) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45, 2446.
      (d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173.
      (e) Saito, S.; Takeuchi, K. Tetrahedron Lett. 2007, 48, 595.

    13. [13]

      Saito, S.; Maeda, K.; Yamasaki, R.; Kitamura, T.; Nakagawa, M.; Kato, K.; Azumaya, I.; Masu, H. Angew. Chem., Int. Ed. 2010, 49, 1830.  doi: 10.1002/anie.200907052

    14. [14]

      Saito, S.; Yoshizawa, T.; Ishigami, S.; Yamasaki, R. Tetrahedron Lett. 2010, 51, 6028.  doi: 10.1016/j.tetlet.2010.09.031

    15. [15]

      (a) Saya, L.; Bhargava, G.; Navarro, M. A.; Gulías, M.; López, F.; Fernández, I.; Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2010, 49, 9886.
      (b) Saya, L.; Fernández, I.; López, F.; Mascareñas, J. L. Org. Lett. 2014, 16, 5008.

    16. [16]

      Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.  doi: 10.1021/ol1028628

    17. [17]

      (a) Ogata, K.; Shimada, D.; Furuya, S.; Fukuzawa, S.-I. Org. Lett. 2013, 15, 1182.
      (b) Ogata, K.; Atsuumi, Y.; Fukuzawa, S.-I. Org. Lett. 2010, 12, 4536.
      (c) Pan, B.; Wang, C.; Wang, D.; Wu, F.; Wan, B. Chem. Commun. 2013, 49, 5073.

    18. [18]

      (a) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 16, 1157.
      (b) Wang, Q.; Wang, C.; Shi, W.; Xiao, Y.; Guo, H. Org. Biomol. Chem. 2018, 16, 4881.
      (c) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541.
      (d) Liu, C.-H.; Yu, Z.-X. Angew. Chem., Int. Ed. 2017, 56, 8667.
      (e) Wang, Y.-Y.; Wang, J.-H.; Su, J.-C.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.-Z.; Zhang, S.-W.; Wender, P.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.

    19. [19]

      (a) Sumida, Y.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 4677.
      (b) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573.

    20. [20]

      (a) Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett. 2014, 25, 2281.
      (b) Mori, T.; Nakamura, T.; Kimura, M. Org. Lett. 2011, 13, 2266.
      (c) Mita, T.; Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754.
      (d) Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.

    21. [21]

      Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350.  doi: 10.1021/ja060220y

    22. [22]

      (a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
      (b) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 6788.
      (c) Liu, L.; Montgomery, J. Org. Lett. 2007, 9, 3885.
      (d) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067.

    23. [23]

      (a) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277.
      (b) Nečas, D.; Kotora, M. Org. Lett. 2008, 10, 5261.
      (c) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720.

    24. [24]

      Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet. Chem. 1990, 382, 191.  doi: 10.1016/0022-328X(90)85227-P

    25. [25]

      (a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4660.
      (b) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4040.
      (c) Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1975.
      (d) Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
      (e) Schaub, T.; Backes, M.; Radius, U. Organometallics 2006, 25, 4196.
      (f) Iverson, C. N.; Jones, W. D. Organometallics 2001, 20, 5745.

    26. [26]

      Ho, K. Y. T.; Aïssa, C. Chem.-Eur. J. 2012, 18, 3486.  doi: 10.1002/chem.201200167

    27. [27]

      (a) Kumar, P.; Zhang, K.; Louie, J. Angew. Chem., Int. Ed. 2012, 51, 8602.
      (b) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52, 12161.

    28. [28]

      (a) Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537.
      (b) Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244.

    29. [29]

      Auvinet, A.-L.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2011, 50, 2769.  doi: 10.1002/anie.201007598

    30. [30]

    31. [31]

      Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543.  doi: 10.1021/ja00743a050

    32. [32]

      Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904.  doi: 10.1021/ja0448723

    33. [33]

      (a) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567.
      (b) Ohnishi, Y.-Y.; Nakao, Y.; Sato, H.; Nakao, Y.; Hiyama, T.; Sakaki, S. Organometallics 2009, 28, 2583.
      (c) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964.
      (d) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428.
      (e) Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931.
      (f) Yada, A.; Yukawa, T.; Idei, H.; Nakao, Y.; Hiyama, T. Bull. Chem. Soc. Jpn. 2010, 83, 619.
      (g) Nakao, Y.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024.
      (h) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
      (i) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
      (j) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
      (k) Minami, Y.; Yoshiyasu, H.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2013, 52, 883.
      (l) Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 856.

    34. [34]

      (a) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
      (b) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037.
      (c) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
      (d) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
      (e) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420.
      (f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.

    35. [35]

      (a) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374.
      (b) Sun, M.; Zhang, H.-Y.; Han, Q.; Yang, K.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 9566.

    36. [36]

      Zhang, J.-S.; Chen, T.-Q.; Zhou, Y.-B.; Yin, S.-F.; Han, L.-B. Org. Lett. 2018, 20, 6746.  doi: 10.1021/acs.orglett.8b02854

    37. [37]

      Chen, H.; Sun, S.-H.; Liu, Y.-H.; Liao, X.-B. ACS Catal. 2020, 10, 1397.  doi: 10.1021/acscatal.9b04586

    38. [38]

      Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, O. J. Am. Chem. Soc. 2017, 139, 1416.  doi: 10.1021/jacs.6b12293

    39. [39]

      Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586.  doi: 10.1021/jacs.7b11591

    40. [40]

      Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 7, 2889.

    41. [41]

      Jiang, C.; Lu, H.; Xu, W.-H.; Wu, J.-N.; Yu, T.-Y.; Xu, P.-F.; Wei, H. ACS Catal. 2020, 10, 1947.  doi: 10.1021/acscatal.9b04112

    42. [42]

      Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791.  doi: 10.1021/ol4005068

    43. [43]

      (a) Liu, Q.-S.; Wang, D.-Y.; Yang, Z.-J.; Luan, Y.-X.; Yang, J.-F.; Li, J.-F.; Pu, Y.-G.; Ye, M.-C. J. Am. Chem. Soc. 2017, 139, 18150.
      (b) Wang, Y.-X.; Ye, M.-C. Sci. China, Chem. 2018, 61, 1004.

    44. [44]

      Bai, D.-C.; Yu, Y.-J.; Guo, H.-M.; Chang, J.-B.; Li, X.-W. Angew. Chem., Int. Ed. 2020, 59, 2740.  doi: 10.1002/anie.201913130

    45. [45]

      (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485.
      (b) Zhou, X.; Dong, G.-B. Angew. Chem., Int. Ed. 2016, 55, 15091.
      (c) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932.

    46. [46]

      (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
      (b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874.
      (c) Hsieh, J.-C.; Ebata, S.; Nakao, Y.; Hiyama, T. Synlett 2010, 1709.

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(74)
  • Abstract views(2583)
  • HTML views(886)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return