Recent Advances of CO2 Fixation via Asymmetric Catalysis for the Direct Synthesis of Optically Active Small Molecules
- Corresponding author: Chen Jie, chenjie318827@hotmail.com Li Gongqiang, iamgqli@njtech.edu.cn Xia Ji-Bao, jibaoxia@licp.cas.cn
Citation:
Guo Xiao, Wang Yazhou, Chen Jie, Li Gongqiang, Xia Ji-Bao. Recent Advances of CO2 Fixation via Asymmetric Catalysis for the Direct Synthesis of Optically Active Small Molecules[J]. Chinese Journal of Organic Chemistry,
;2020, 40(8): 2208-2220.
doi:
10.6023/cjoc202002032
Scott, A. Chem. Eng. News 2015, 93, 10.
doi: 10.1021/cen-09237-bus1
Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
doi: 10.1038/ncomms6933
Fiorani, G.; Guo, W.; Kleij, A.-W. Green Chem. 2015, 17, 1375.
doi: 10.1039/C4GC01959H
Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52.
doi: 10.1002/cssc.201402837
Maeda, C.; Miyazaki, Y.; Ema, T. Catal. Sci. Technol. 2014, 4, 1482.
doi: 10.1039/c3cy00993a
Tlili, A.; Frogneux, X.; Blondiaux, E.; Cantat, T. Angew. Chem., Int. Ed. 2014, 53, 2543.
doi: 10.1002/anie.201310337
Yuan, G.; Qi, C.; Wu, W.; Jiang, H. Curr. Opin. Green Sust. Chem. 2017, 3, 22.
doi: 10.1016/j.cogsc.2017.03.003
Zhang, W.; Zhang, N.; Guo, C.-X.; Lü, X. Chin. J. Org. Chem. 2017, 37, 1309(in Chinese).
Zhang, Z.; Ju, T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741.
doi: 10.1055/s-0036-1588403
Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
doi: 10.1002/cssc.201700205
Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
doi: 10.1002/cjoc.201700742
Zhao, Y., Liu, Z.-M. Chin. J. Chem. 2018, 36, 455
doi: 10.1002/cjoc.201800014
Hu, J.; Liu, H.; Han, B. Sci. China Chem. 2018, 61, 1486.
doi: 10.1007/s11426-018-9396-3
Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545.
doi: 10.1002/cjoc.201800011
Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77, 783(in Chinese).
Cheng, L.; Xie, J.-H. Chin. J. Org. Chem. 2020, 40, 247(in Chinese).
Kolbe, H. Justus Liebigs Ann. Chem. 1860, 113, 125.
doi: 10.1002/jlac.18601130120
Lindsey, A.-S.; Jeskey, H. Chem. Rev. 1957, 57, 583.
doi: 10.1021/cr50016a001
Luo, J.; Preciado, S.; Xia, P.; Larrosa, L. Chem.-Eur. J. 2016, 22, 6798.
doi: 10.1002/chem.201601114
Zhang, W.-Z.; Li, H.; Zeng, Y.; Tao, X.; Lu, X. Chin. J. Chem. 2018, 36, 112.
doi: 10.1002/cjoc.201700581
Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
doi: 10.1021/cr068357u
White, J.-L.; Baruch, M.-F.; Pander Ⅲ, J.-E.; Hu, Y.-I.; Fortmeyer, C.; Park, J.-E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T.-W.; Abelev, E.; Bocarsly, A.-B. Chem. Rev. 2015, 115, 12888.
doi: 10.1021/acs.chemrev.5b00370
Wang, J.-L.; Miao, C.-X.; Dou, X.-Y.; Gao, J.; He, L.-N. Curr. Org. Chem. 2011, 15, 621.
doi: 10.2174/138527211794518952
Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T. Green Chem. 2015, 17, 157.
doi: 10.1039/C4GC01614A
Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. ACS Catal. 2017, 7, 1077.
doi: 10.1021/acscatal.6b02715
Liu, M.; Qin, T.; Zhang, Q.; Fang, C.; Fu, Y.; Lin, B.-L. Sci. China Chem. 2015, 58, 1524.
doi: 10.1007/s11426-015-5405-y
Zhang, L.; Zhao, Z.-J.; Gong, J. Angew. Chem., Int. Ed. 2017, 56, 11326.
doi: 10.1002/anie.201612214
Yu, D.; Teong, S.-P.; Zhang, Y. Coord. Chem. Rev. 2015, 293-294, 279.
doi: 10.1016/j.ccr.2014.09.002
Liu, A.-H.; Yu, B.; He, L.-N. Greenhouse Gas Sci. Technol. 2015, 5, 17.
doi: 10.1002/ghg.1461
Yeung, C.-S.; Dong, V.-M.; Top. Catal. 2014, 57, 1342.
doi: 10.1007/s11244-014-0301-9
Zhang, W.; Lu, X. Chin. J. Catal. 2012, 33, 745.
doi: 10.1016/S1872-2067(11)60390-2
Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
doi: 10.1039/c2cc33848c
Ackermann, L. Angew. Chem., Int. Ed, .2011, 50, 3842.
doi: 10.1002/anie.201007883
Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
doi: 10.1039/c0cs00129e
Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739.
doi: 10.1021/acscatal.6b02124
Chen, Y.-G.; Xu, X.-T.; Zhang, K.; Li, Y.-Q.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Synthesis 2018, 50, 35.
doi: 10.1055/s-0036-1590908
Riduan, S.-N.; Zhang, Y.; Ying, J.-Y. Angew. Chem., Int. Ed. 2009, 48, 3322.
doi: 10.1002/anie.200806058
Gomes, C.-D.-N.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.
doi: 10.1002/anie.201105516
Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, K.; Skrydstrup, T. Angew. Chem., Int. Ed. 2015, 54, 6862.
doi: 10.1002/anie.201500233
Kielland, N.; Whiteoak, C.-J.; Kleij, A.-W. Adv. Synth. Catal. 2013, 355, 2115.
doi: 10.1002/adsc.201300422
Lu, X.-B.; Darensbourg, D.-J. Chem. Soc. Rev. 2012, 41, 1462.
doi: 10.1039/C1CS15142H
Decortes, A.; Castilla, A.-M.; Kleij, A.-W. Angew. Chem., Int. Ed. 2010, 49, 9822.
doi: 10.1002/anie.201002087
Vaitla, J.; Guttormsen, Y.; Mannisto, J.-K.; Nova, A.; Repo, T.; Bayer A.; Hopmann, K.-H. ACS Catal. 2017, 7, 7231.
doi: 10.1021/acscatal.7b02306
Sato, F.; Iijima, S.; Sato, M. J. Chem. Soc., Chem. Commun. 1981, 180.
Beng, T.-K.; Gawley, R.-E. J. Am. Chem. Soc. 2010, 132, 12216.
doi: 10.1021/ja105772z
Perrona, Q.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 2611.
doi: 10.1002/adsc.201000517
Egami, H.; Sato, K.; Asada, J.; Kawato, Y.; Hamashima, Y.; Tetrahedron 2015, 71, 6384.
doi: 10.1016/j.tet.2015.05.041
Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008
doi: 10.1021/ja026620c
Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
doi: 10.1021/ja049506y
Ishii, M.; Mori, F.; Tanaka, K. Chem.-Eur. J. 2014, 20, 2169.
doi: 10.1002/chem.201304623
Williams, C.-M.; Johnson, J.-B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
doi: 10.1021/ja8062925
Greenhalgh, M.-D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900.
doi: 10.1021/ja3045053
Hayashi, C.; Hayashi, T.; Kikuchi, S.; Yamada, T. Chem. Lett. 2014, 43, 565.
doi: 10.1246/cl.131163
Hayashi, C.; Hayashi, T.; Yamada, T. Bull. Chem. Soc. Jpn. 2015, 88, 862.
doi: 10.1246/bcsj.20150043
Kawashima, S.; Aikawa, K.; Mikami, K.; Eur. J. Org. Chem. 2016, 19, 3166.
Dian, L.; Müller, D.-S.; Marek, I. Angew. Chem., Int. Ed. 2017, 56, 6783.
doi: 10.1002/anie.201701094
Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149
Chen, X.-W.; Zhu, L.; Gui, Y.-Y.; Jing, K.; Jiang, Y.-X.; Bo, Z.-Y.; Lan, Y.; Li J.; Yu, D.-G. J. Am. Chem. Soc. 2019, 141, 18825.
doi: 10.1021/jacs.9b09721
Qiu, J.; Gao, S.; Li, C.; Zhang, L.; Wang, Z.; Wang, X.; Ding, K.-L. Chem.-Eur. J. 2019, 25, 13874.
doi: 10.1002/chem.201903906
Feroci, M.; Orsini, M.; Palombi, L.; Sotgiu, G.; Colapietro, M.; Inesi, A. J. Org. Chem. 2004, 69, 487.
doi: 10.1021/jo0343836
Orsini, M.; Feroci, M.; Sotgiuand. G.; Inesi, A. Org. Biomol. Chem. 2005, 3, 1202.
doi: 10.1039/b500570a
Zhang, K.; Wang, H.; Zhao, S.-F.; Niu D.-F.; Lu, J.-X. J. Electroanal. Chem. 2009, 630, 35.
doi: 10.1016/j.jelechem.2009.02.013
Chen, B.-L.; Tu, Z.-Y.; Zhu, H.-W.; Sun, W.-W.; Wang, H.; Lu, J.-X. Electrochim. Acta 2014, 116, 475.
doi: 10.1016/j.electacta.2013.11.001
He, Q.; O'Brien, J.-W.; Kitselman, K.-A.; Tompkins, L.-E.; Curtis G.-C.-T.; Kerton, F.-M. Catal. Sci. Technol. 2014, 4, 1513.
doi: 10.1039/C3CY00998J
Sakakura, T.; Kohnoa, K. Chem. Commun. 2009, 45, 1312.
Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 42, 55.
doi: 10.1016/j.elecom.2014.02.009
Yang, H.-P.; Yue, Y.-N.; Sun, Q.-L.; Feng, Q.; Wang, H.; Lu, J.-X. Chem. Commun. 2015, 51, 12216.
doi: 10.1039/C5CC04554A
Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
doi: 10.1039/C8QO00507A
Song, Q.-W.; Liu, P.; Han, L.-H.; Zhang K.; He, L.-N. Chin. J. Chem. 2018, 36, 147.
doi: 10.1002/cjoc.201700572
Niu, D.-F.; Xiao, L.-P.; Zhang, A.-J.; Zhang, G.-R.; Tan, Q.-Y.; Lu, J.-X. Tetrahedron 2008, 64, 10517.
doi: 10.1016/j.tet.2008.08.093
Isse, A.; Gennaro, A.; Vianello, E. J. Chem. Soc., Dalton Trans. 1996, 1613.
Takeichi, T.; Ozaki, Y.; Takayama, Y. Chem. Lett. 1987, 1137.
Yoshida, M.; Fujita, M.; Ishii, T.; Ihara, M. J. Am. Chem. Soc. 2003, 125, 4874.
doi: 10.1021/ja0340681
Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc. 2010, 132, 4072.
doi: 10.1021/ja1007118
Yamada, W.; Sugawara, Y.; Cheng, H.-M. Ikeno, T.; Yamada, T. Eur. J. Org. Chem. 2007, 2007, 2604.
doi: 10.1002/ejoc.200700169
Vara, B.-A.; Struble, T.-J.; Wang, W.; Dobish, M.-C.; Johnston, J.-N. J. Am. Chem. Soc. 2015, 137, 7302.
doi: 10.1021/jacs.5b04425
Yousefi, R.; Struble, T.-J.; Payne, J.-L.; Vishe, M.; Schley, N.-D.; Johnston, J.-N. J. Am. Chem. Soc. 2019, 141, 618.
doi: 10.1021/jacs.8b11793
Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588.
doi: 10.1021/acscatal.7b03370
Gao, X.-T.; Xie, S.-L.; Zhou, F.; Wu, H.-H.; Zhou, J. Chem. Commun. 2019, 55, 14303.
doi: 10.1039/C9CC07671A
Xie, S.; Gao, X.; Zhou, F.; Wu, H.; Zhou, J. Chin. Chem. Lett. 2020, 31, 324.
doi: 10.1016/j.cclet.2019.05.060
Hartwig, J.-F.; Pouy, M.-J. Top. Organomet. Chem. 2011, 34, 169.
Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155.
doi: 10.1021/ja210923k
Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
doi: 10.1021/acs.accounts.7b00300
Zhang, X.; Liu, W.-B.; Cheng, Q.; You, S.-L. Organometallics 2016, 35, 2467.
doi: 10.1021/acs.organomet.6b00339
Zhuo, C.-X.; Zhang X.; You, S.-L. ACS Catal. 2016, 6, 5307.
doi: 10.1021/acscatal.6b01585
Ye, K.-Y.; He, H.; Liu, W.-B.; Dai, L.-X.; Helmchen, G.; You, S.-L. J. Am. Chem. Soc. 2011, 133, 19006.
doi: 10.1021/ja2092954
Roggen, M.; Carreira, E.-M. J. Am. Chem. Soc. 2010, 132, 11917.
doi: 10.1021/ja105271z
Xia, J.-B.; Liu, W.-B.; Wang, T.-M.; You, S.-L. Chem.-Eur. J. 2010, 16, 6442.
doi: 10.1002/chem.201000467
Yamashita, Y.; Gopalarathnam, A; Hartwig, J.-F. J. Am. Chem. Soc. 2007, 129, 7508.
doi: 10.1021/ja0730718
Nemoto, T.; Sakamoto, T.; Matsumoto T.; Hamada, Y. Tetrahedron Lett. 2006, 47, 8737.
doi: 10.1016/j.tetlet.2006.10.003
Welter, C.; Moreno, R.-M.; Streiff, S.; Helmchen, G. Org. Biomol. Chem. 2005, 3, 3266.
doi: 10.1039/b508634e
Zheng, S.-C.; Zhang, M.; Zhao, X.-M. Chem.-Eur. J. 2014, 20, 7216.
doi: 10.1002/chem.201402388
Zhang, M.; Zhao X.; Zheng, S. Chem. Commun. 2014, 50, 4455.
doi: 10.1039/c4cc00413b
Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Synthesis 2009, 2076.
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Jieshuai Xiao , Yuan Zheng , Yue Zhao , Zhuangzhi Shi , Minyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
Fengqing Wang , Changxing Qi , Chunmei Chen , Qin Li , Qingyi Tong , Weiguang Sun , Zhengxi Hu , Minyan Wang , Hucheng Zhu , Lianghu Gu , Yonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252