Citation: Zhang Wenwen, Wang Zixuan, Bai Xiaoyan, Li Bijie. Substrate-Directed Catalytic Asymmetric Hydroalkynylation of Alkenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1087-1095. doi: 10.6023/cjoc202002017 shu

Substrate-Directed Catalytic Asymmetric Hydroalkynylation of Alkenes

  • Corresponding author: Li Bijie, bijieli@mail.tsinghua.edu.cn
  • Received Date: 16 February 2020
    Revised Date: 8 March 2020
    Available Online: 31 May 2020

    Fund Project: Project supported by the Thousand Young Talents Program

Figures(13)

  • Catalytic asymmetric hydrofunctionalization of alkene is an important research field, which enables efficient construction of chiral molecules from readily available starting materials. Asymmetric hydrofunctionalization of multiple substituted alkenes represents a significant challenge to organic chemists because this process involves the simutaneous control of regio-, diastereo-, and enantio-selectivities. The key to solve this challenge is to identify novel catalyst systems to exert powerful regio- and stereo-control. Recently, by taking advantage of substrate-directed strategy, we have developed a number of alkene functionalization methods with excellent regio-, diastereo-, and enantio-selectivities. In particular, we focus on catalytic asymmetric hydroalkynylation of alkenes as a model transformation to analyze the factors that control the selectivity.
  • 加载中
    1. [1]

      Wang, J. Stereoselective Alkene Synthesis; Springer-Verlag, Berlin/Heidelberg, 2012.

    2. [2]

      (a) Coombs, J. R.; Morken, J. P. Angew. Chem. Int. Ed. 2016, 55, 2636.
      (b) Chen, J. H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
      (c) Dhungana, R. K.; Kc, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314.
      (d) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Chem. Asian J. 2018, 13, 2277.
      (e) Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Angew. Chem., Int. Ed. 2019, 58, 1562.
      (f) Li, S.; Li, Z.; You, C.; Lü, H.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 1568.
      (g) Cheng, L.; Xie, J. Chin. J. Org. Chem. 2020, 40, 247.
      (h) Zhou, Q.; Feng, X, ; Yang, J.; Du, H. Chin. J. Org. Chem. 2019, 39, 2188.

    3. [3]

      Wang, Z.-X.; Bai, X.-Y.; Li, B.-J. Chin. J. Chem. 2019, 37, 1174.

    4. [4]

      (a) Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682.
      (b) Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 1576.
      (c) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 10275.
      (d) Shirakura, M.; Suginome, M. Angew. Chem. Int. Ed. 2010, 49, 3827.
      (e) Fan, B.-M.; Yang, Q.-J.; Hu, J.; Fan, C.-L.; Li, S.-F.; Yu, L.; Huang, C.; Tsang, W. W.; Kwong, F. Y. Angew. Chem., Int. Ed. 2012, 51, 7821.
      (f) Sawano, T.; Ou, K.; Nishimura, T.; Hayashi, T. Chem. Commun. 2012, 48, 6106.
      (g) Blay, G.; Pedro, J. R.; Sanz-Marco, A. Synthesis 2018, 50, 3281.
      (h) Zhi, Y.; Huang, J.; Liu, N.; Lu, T.; Dou, X. Org. Lett. 2017, 19, 2378.

    5. [5]

      (a) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 10965.
      (b) Yeqiang, H.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
      (c) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nat. Chem. 2019, 11, 1158.
      (d) Chen, Q.; Tang, Y.; Huang, sT.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 5286.

    6. [6]

      (a) Trost, B. M., Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley, New York, 2014.
      (b) Li, Y.; Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Angew. Chem., Int. Ed. 2011, 50, 6341.
      (c) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
      (d) Hong, F.-L.; Wang, Z.-S.; Wei, D.-D.; Zhai, T.-Y.; Deng, G.-C.; Lu, X.; Liu, R.-S.; Ye, L.-W. J. Am. Chem. Soc. 2019, 141, 16961.
      (e) Zhu, D.; Chen, L.; Zhang, H.; Ma, Z.; Jiang, H.; Zhu, S. Angew. Chem., Int. Ed. 2018, 57, 12405.
      (f) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
      (g) Shen, T.; Wang, T.; Qin, C.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 6677.
      (h) Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem., Int. Ed. 2017, 56, 13130. (i) Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223. (j) Jiang, Z.; Lu, P.; Wang, Y. Org. Lett. 2012, 14, 6266.
      (k) Zhu, C.; Chu, H.; Li, G.; Ma, S.; Zhang, J. J. Am. Chem. Soc. 2019, 141, 19246.

    7. [7]

      Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Wiley-VCH, Weinheim, 2005.
       

    8. [8]

      (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
      (b) Winstein, S.; Sonnenberg, J.; De Vries, L. J. Am. Chem. Soc. 1959, 81, 6523.
      (c) Winstein, S.; Sonnenberg, J. J. Am. Chem. Soc. 1961, 83, 3235.

    9. [9]

      Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958.
       

    10. [10]

      (a) Thompson, H. W.; McPherson, E. J. Am. Chem. Soc. 1974, 96, 6232.
      (b) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.

    11. [11]

      (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
      (b) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2017, 50, 988.

    12. [12]

      (a) Evans, D. A.; Fu, G. C. J. Am. Chem. Soc. 1991, 113, 4042.
      (b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198.
      (c) Bochat, A. J.; Shoba, V. M.; Takacs, J. M. Angew. Chem., Int. Ed. 2019, 58, 9434.

    13. [13]

      Kawasaki, Y.; Ishikawa, Y.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2011, 133, 20712.
       

    14. [14]

      (a) Willis, M. C. Chem. Rev. 2010, 110, 725.
      (b) Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem., Int. Ed. 2014, 53, 2455.

    15. [15]

      (a) Albrecht, M. Chem. Rev. 2010, 110, 576.
      (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
      (d) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.

    16. [16]

      Wang, M.-X. Chem. Commun. 2015, 51, 6039.  doi: 10.1039/C4CC10327K

    17. [17]

      (a) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
      (b) Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed. 2005, 44, 4042.

    18. [18]

      Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510.
       

    19. [19]

      Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788.
       

    20. [20]

      Bai, X. Y.; Zhang, W. W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506.  doi: 10.1021/jacs.7b12054

    21. [21]

      Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790.  doi: 10.1039/c2cs15356d

    22. [22]

      Hartwig, J. F. Organotransition Metal Chemistry:From Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.
       

    23. [23]

      Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed. 2016, 55, 9007.  doi: 10.1002/anie.201601792

    24. [24]

      Ding, C. H.; Hou, X. L. Chem. Rev. 2011, 111, 1914.
       

    25. [25]

      Yu, Z.; Meng, L.; Lin, Z. Organometallics 2019, 38, 2998.  doi: 10.1021/acs.organomet.9b00343

    26. [26]

      Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Acc. Chem. Res. 2019, 52, 2657.
       

    27. [27]

      Zhang, W.-W.; Zhang, S.-L.; Li, B.-J. Angew. Chem., Int. Ed. 2020, 59, 6874.  doi: 10.1002/anie.201916088

    28. [28]

      (a) Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 5627.
      (b) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
      (c) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
      (d) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W. J. Am. Chem. Soc. 2019, 141, 14554.

    29. [29]

      (a) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340.
      (b) Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.
      (c) Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.

    30. [30]

      Wang, Z.-X.; Bai, X.-Y.; Yao, H.-C.; Li, B.-J. J. Am. Chem. Soc. 2016, 138, 14872.
       

    31. [31]

      Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G. Angew. Chem., Int. Ed. 2020, 59, 7990.

    32. [32]

      (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
      (b) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564.
      (c) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.

    33. [33]

      Wang, Z.-X.; Li, B.-J. J. Am. Chem. Soc. 2019, 141, 9312.  doi: 10.1021/jacs.9b03027

    34. [34]

      (a) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. J. Am. Chem. Soc. 2018, 140, 3542.
      (b) Liu, Z.; Li, X.; Zeng, T.; Engle, K. M. ACS Catal. 2019, 3260.
      (c) Shen, H.-C.; Zhang, L.; Chen, S.-S.; Feng, J.; Zhang, B.-W.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. ACS Catal. 2019, 9, 791.
      (d) Nimmagadda, S. K.; Liu, M.; Karunananda, M. K.; Gao, D. W.; Apolinar, O.; Chen, J. S.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. 2019, 58, 3923.
      (e) Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
      (f) Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. J. Am. Chem. Soc. 2018, 140, 16929.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(48)
  • Abstract views(2772)
  • HTML views(777)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return