氮杂环卡宾催化氰基乙酸酯与二烯酮双Michael反应:非对映选择性合成多取代环己酮和茚

张阳 邢芬 冯泽男 杜广芬 顾承志 何林

引用本文: 张阳, 邢芬, 冯泽男, 杜广芬, 顾承志, 何林. 氮杂环卡宾催化氰基乙酸酯与二烯酮双Michael反应:非对映选择性合成多取代环己酮和茚[J]. 有机化学, 2020, 40(6): 1608-1617. doi: 10.6023/cjoc202002012 shu
Citation:  Zhang Yang, Xing Fen, Feng Zenan, Du Guangfen, Gu Chengzhi, He Lin. N-Heterocyclic Carbene-Catalyzed Double Michael Addition of Cyano Acetates and Dienones: Diastereoselective Synthesis of Multisubstituted Cyclohexanones and Indanes[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1608-1617. doi: 10.6023/cjoc202002012 shu

氮杂环卡宾催化氰基乙酸酯与二烯酮双Michael反应:非对映选择性合成多取代环己酮和茚

    通讯作者: 杜广芬, duguangfen@shzu.edu.cn; 何林, helin@shzu.edu.cn
  • 基金项目:

    国家自然科学基金(No.21662029)资助项目

摘要: 利用氮杂环卡宾(NHC)独特的Brønsted碱性催化二烯酮与氰基乙酸酯的双Michael加成反应.在10 mol% NHC催化下,二乙烯酮可以与氰基乙酸酯反应,以60%~89%的产率和5:1~>20:1的dr值得到多取代环己酮.在相同反应条件下,邻苯二烯酮与氰基乙酸酯和丙二腈等反应,以77%~98%的产率和>20:1的dr值得到多取代茚产物.

English

  • 氮杂环卡宾(NHCs)作为一类重要的有机小分子催化剂, 在有机合成化学中有着广泛应用[1].由于邻位氮原子的供电子作用, NHC中心碳原子带有部分负电荷, 因而具有极强的亲核性, 可以与多种不同的亲电试剂发生亲核加成形成共价键, 催化相应的化学转化.除了经典的安息香缩合[2]和Stetter反应[3]外, Glorius和Bode等[4]发展了α, β-不饱和烯醛延伸极性反转反应, Rovis等[5]发展了官能团化醛的极性反转, 扩展了NHCs在极性反转领域的应用.基于NHCs的强亲核性, 叶松课题组[6]和Chi小组[7]分别在烯酮(ketenes)活化和酯的活化方面做了大量开创性工作, 发展了一系列手性杂环的合成新方法.但以上这些反应均是建立在NHCs强的Lewis碱性基础上的.另一方面, NHCs具有独特的Brønsted碱性.利用这一性质, 2009年, Coquerel等[8]首次利用NHCs催化了活泼烯烃分子内的Michael加成反应, 合成了螺环内酯.接着, Scheidt等[9]利用NHCs对醇羟基的活化, 研究了醇与α, β-不饱和烯酮的oxo-Michael加成, 并尝试了不对称反应.在以上两例报道中, NHC通过与亲核试剂中的活泼氢形成氢键来活化亲核试剂, 表现出优良的Brønsted碱性.随后, Zhang等[10]发展了胺与烯酮的aza-Michael加成反应.我们课题组发展了NHCs催化的Vinylogous-Michael加成[11a]、Sulfa-Michael加成[11b, 11c]和双Michael加成等[11d, 11e]反应.更有意义的是, Huang小组[12]首次实现了手性氮杂环卡宾催化下, 活泼烯烃的分子间不对称Michael加成、Aza-Michael加成、Sulfa-Michael加成和氢转移反应, 这些优秀的工作极大地促进了对NHCs Brønsted碱性的研究.

    官能团化的多取代环己酮和多取代茚是两类重要的有机化合物, 在有机合成中有着广泛应用[13].二乙烯基酮的双Michael加成反应为多取代环己酮的合成提供了有效方法[14], 而有机催化的串联反应则可高效构筑茚类化合物[15].负载型固体碱KF/Al2O3在超声辐射下可高效催化二烯酮与活泼亚甲基化合物的双Michael加成反应, 几分钟内即可高产率地得到多取代环己酮[16a]. 1, 2-环己二胺可以通过活化二烯酮的羰基, 催化二烯酮与丙二腈等活泼亚甲基化合物的双Michael加成反应, 以较高的收率得到反式结构为主的多取代环己酮[16b]. n-Bu3P可以作为Lewis碱通过对二烯酮的碳碳双键的亲核进攻, 催化与活泼亚甲基的双Michael加成, 以良好的产率得到环己酮产物[16c].天然生物碱类有机伯胺催化剂, 如奎宁和辛可宁等可催化二烯酮的不对称双Michael加成或者串联反应, 以优秀的ee值得到手性环己酮衍生物[16d~16f].最近, 我们对NHCs的Brønsted碱催化性能开展了持续研究[11].基于我们的研究工作, 认为可以利用NHCs的Brønsted碱性, 催化氰基乙酸酯与二烯酮发生双Michael加成, 合成多取代环己酮和茚, 由于氰基和酯基均易于衍生化, 这为进一步制备多样化的环己酮和茚提供了机会.

    首先以二烯酮1a与氰基乙酸甲酯(2a)作为模型反应, 对反应条件进行优化.在无水N, N-二甲基甲酰胺(DMF)中, 以稳定的NHC A为催化剂, 室温反应12 h, 即可以87%的收率和>20:1的dr值得到多取代环己酮产物3a(表 1, Entry 1).在此基础上, 对其他几种NHCs催化剂进行了考察.用NHC A的前体盐IPr•HCl和tBuOK反应现场生成NHC A来催化该反应, 可以71%的产率和>20:1的dr值得到目标产物(表 1, Entry 1).咪唑型NHC B可以催化反应进行, 以53%的产率和优秀的dr值得到目标产物(表 1, Entry 2).饱和咪唑盐型NHC C可有效催化反应进行, 以75%的产率和>20:1的dr值得到3a(表 1, Entry 3).而噻唑型NHC D和三唑型NHC E, 由于其Brønsted碱性较弱, 催化效率较低, 只以较低产率得到3a(表 1, Entries 4, 5), 但产物的dr值仍然可以达到>20:1.接下来, 以NHC A为催化剂, 对反应溶剂进行了筛选.以四氢呋喃为溶剂, 可以83%的产率和11:1的dr值得到3a(表 1, Entry 6).以二氯甲烷为溶剂时, 虽然可以获得85%的产率, 但反应的dr值降为3:1(表 1, Entry 7).该反应在甲苯中反应时, 可以66%的收率和8:1的dr值得到环己酮产物3a(表 1, Entry 8).在极性溶剂或质子溶剂中, 该双Michael加成反应可以顺利进行, 以较高的产率得到目标产物, 但dr值下降明显(表 1, Entries 9~11).当降低催化剂用量时, 反应需要更长的时间, 且产率下降为79%(表 1, Entry 12).综上所述, 反应最优条件为: 10 mol%的NHC A为催化剂, DMF为溶剂, 1.5 equiv.的2a, 室温反应12 h(表 1, Entry 1).

    表 1

    表 1  反应条件的优化a
    Table 1.  Optimization of reaction conditions
    下载: 导出CSV
    Entry Catalyst Base Solvent Yieldb/% drc
    1 A DMF 87 (71)d >20:1
    2 B tBuOK DMF 53 >20:1
    3 C tBuOK DMF 75 >20:1
    4 D tBuOK DMF 55 >20:1
    5 E tBuOK DMF 79 >20:1
    6 A THF 83 11:1
    7 A DCM 85 3:1
    8 A Toluene 66 8:1
    9 A CH3CN 75 3:1
    10 A DMSO 72 6:1
    11 A MeOH 85 5:1
    12e A DMF 79 >20:1
    a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), base (10 mol%), solvent 1.0 mL; b Isolated total yield of two diastereomers; c dr was determined by 1H NMR analysis of the crude reaction mixture. d 12 mol% NHC precursor IPr•HCl, 10 mol% tBuOK. e Using 5 mmol% NHC A.

    在确定了最优反应条件后, 对反应的普适性进行了研究(表 2).苯基对位连有给电子基或拉电子基的二乙烯基酮, 均可顺利地与氰基乙酸甲酯发生双Michael加成, 以较好的收率和优秀的dr值得到相应的产物(表 2, Entries 2~5).其中, 连有拉电子取代基的二烯酮取得了更高的产率.当苯基对位连有强拉电子的氟原子时, 以85%的产率得到环己酮3f, 但dr值降为5:1(表 2, Entry 6).间位或邻位等不同位置取代的二烯酮可有效参加反应, 以较高的产率和dr值给出相应产物(表 2, Entries 7~10).但当邻甲基苯取代的二烯酮1k与氰基乙酸甲酯反应时, 产物的dr值降为5:1(表 2, Entry 11). β-萘基取代的二烯酮可顺利反应, 以85%的产率和>20:1的dr值得到多取代环己酮3l(表 2, Entry 12).芳杂环取代的二烯酮同样适于该串联反应, 以85%的产率和10:1的dr值生成相应的目标产物3m(表 2, Entry 13).更有意思的是, 当把不对称的二烯酮1n用于该双Michael加成反应时, 仍然可以9:1的dr值得到目标产物3n(表 2, Entry 14).同样的, 氰基乙酸乙酯可以与二烯酮顺利反应, 以74%的收率和优秀的dr值得到相应产物3o(表 2, Entry 15).

    表 2

    表 2  反应底物普适性研究a
    Table 2.  Evaluation of substrate scope
    下载: 导出CSV
    Entry Ar1 Ar2 R drb 3 Yieldc/%
    1 C6H5 C6H5 Me >20:1 3a 87
    2 4-CH3C6H4 4-CH3C6H4 Me >20:1 3b 60
    3 4-MeOC6H4 4-MeOC6H4 Me >20:1 3c 70
    4 4-BrC6H4 4-BrC6H4 Me >20:1 3d 84
    5 4-ClC6H4 4-ClC6H4 Me >20:1 3e 85
    6 4-FC6H4 4-FC6H4 Me 5:1 3f 85
    7 3-BrC6H4 3-BrC6H4 Me >20:1 3g 88
    8 3-ClC6H4 3-ClC6H4 Me >20:1 3h 89
    9 2-ClC6H4 2-ClC6H4 Me >20:1 3i 81
    10 2-CH3OC6H4 2-CH3OC6H4 Me 11:1 3j 85
    11 2-CH3C6H4 2-CH3C6H4 Me 5:1 3k 70
    12 β-Naphthyl β-Naphthyl Me >20:1 3l 85
    13 2-Thienyl 2-Thienyl Me 10:1 3m 85
    14 4-CH3OC6H4 4-CH3C6H4 Me 9:1 3n 71
    15c C6H5 C6H5 Et >20:1 3o 74
    a Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), solvent 1.0 mL; b dr was determined by 1H NMR analysis of the crude reaction mixture. cIsolated total yield of two diastereomers

    通过对产物3n的X单晶衍射分析, 确定了这一类多取代环己酮的分子结构和相对构型(图 1).

    图 1

    图 1.  3n的X射线晶体结构
    Figure 1.  Single crystal X-ray structure of 3n

    接下来, 对邻苯二烯酮与活泼亚甲基的双Michael加成环化反应进行了研究.在前述最优反应条件下, 邻苯二烯酮4a可以与氰基乙酸甲酯顺利反应, 以优秀的产率和非对映选择性生成多取代茚产物5a(表 3, Entry 1).在随后对底物适应性的考察中, 发现无论二烯酮α-苯基的对位上带有拉电子基还是供电子基, 均可顺利环化, 高产率、高dr值地生成相应的多取代茚产物, 且取代基的电性和不同的取代基位置(对、间、邻位)对反应产率和非对映选择性无明显影响(表 3, Entries 2~8). β-萘基衍生的邻苯二烯酮可顺利进行双Michael加成反应, 以86%的产率和>20:1的dr值生成产物5i(表 3, Entry 9).更有意思的是, α-烷基取代的双Michael受体4j可高效发生环加成, 以优秀的产率和dr值得到多取代茚5j(表 3, Entry 10).由于亲电活性下降, 邻苯二烯酯4k难以发生此类双Michael加成反应, 以97%的回收率对4k进行了回收(表 3, Entry 11).不对称的邻苯二烯酮可有效与氰基乙酸甲酯发生加成反应, 以较高的收率和优秀的dr值生成相应的多取代茚产物(表 3, Entries 12~15).另外, 氰基乙酸乙酯和丙二腈的活泼亚甲基也可以与邻苯二烯酮加成环化, 以优秀的产率和dr值得到对应的产物(表 3, Entries 16~17).

    表 3

    表 3  反应底物普适性研究a
    Table 3.  Evaluation of substrate scope
    下载: 导出CSV
    Entry R1 R2 EWG drb 5 Yieldc/%
    1 C6H5 C6H5 CO2Me >20:1 5a 97
    2 4-FC6H4 4-FC6H4 CO2Me >20:1 5b 94
    3 4-ClC6H4 4-ClC6H4 CO2Me >20:1 5c 92
    4 4-BrC6H4 4-BrC6H4 CO2Me >20:1 5d 97
    5 4-MeOC6H4 4-MeOC6H4 CO2Me >20:1 5e 84
    6 4-CH3C6H4 4-CH3C6H4 CO2Me >20:1 5f 95
    7 3-ClC6H4 3-ClC6H4 CO2Me >20:1 5g 95
    8 2-ClC6H4 2-ClC6H4 CO2Me >20:1 5h 87
    9 β-Naphthyl β-Naphthyl CO2Me >20:1 5i 86
    10 CH3 CH3 CO2Me >20:1 5j 97
    11 OEt OEt CO2Me 5k Trace
    12 4-BrC6H4 4-ClC6H4 CO2Me >20:1 5l 93
    13 4-FC6H4 C6H5 CO2Me >20:1 5m 80
    14 4-CH3C6H4 4-CH3OC6H4 CO2Me >20:1 5n 71
    15 4-CH3C6H4 C6H5 CO2Me >20:1 5o 92
    16 C6H5 C6H5 CO2Et >20:1 5p 98
    17 C6H5 C6H5 CN >20:1 5q 89
    a Reaction conditions: 4 (0.2 mmol), 2 (0.3 mmol), solvent 1.0 mL; b dr was determined by 1H NMR analysis of the crude reaction mixture; c Isolated total yield of two diastereomers.

    这类多取代茚的结构和相对构型通过化合物5d的X单晶衍射分析得以确定(图 2).

    图 2

    图 2.  5d的X射线晶体结构
    Figure 2.  Single crystal X-ray structure of 5d

    对于该反应, 我们提出的可能催化机理如Scheme 1所示. NHC作为Brønsted碱与氰基乙酸酯亚甲基上弱酸性的氢原子通过氢键作用, 形成中间体I, 该中间体与二烯酮的一端首先发生分子间Michael加成得到烯醇负离子II.通质子交换, 中间体II进一步转化为烯醇中间体III, 随后经互变异构生成中间体IV. NHC与该中间体的活泼氢质子通过氢键作用生成中间体V, 进一步通过分子内Michael加成环化得到烯醇负离子中间体VI, 最后经质子化和互变异构, 得到最终目标产物并释放出游离的NHC, 完成催化循环.

    图式 1

    图式 1.  氮杂环卡宾催化氰基酯的Michael反应机理
    Scheme 1.  N-Heterocyclic carbene catalyzes Michael reaction of cyanoester

    通过二烯酮与氰基乙酸酯和丙二腈等含活泼亚甲基化合物的分子间Michael加成—分子内Michael加成串联反应, 发展了一种有机催化合成多取代环己酮和多取代茚的有效方法. NHCs在该反应中表现出了优异的Brønsted碱催化活性.该方法具有条件温和、无需过渡金属、反应产率和dr值高及底物适应性较广等优点.

    1H NMR以TMS为内标, CDCl3为溶剂, 用Bruker- DMX 400型核磁共振仪测试; HRMS用Thermo Scientific LTQ Orbitrap XL高分辨质谱仪测试; IR用Thermo Fisher Nicolet iS10红外光谱仪测试; 单晶结构由Bruker D8 VENTURE photon II单晶衍射仪测定.薄层色谱板是青岛海洋化工厂GF254硅胶板, 柱层析硅胶是青岛海洋化工厂生产(200~300目); 溶剂经过干燥处理; 其他化学试剂均为分析纯, 购买于阿拉丁化学试剂公司.

    3.2.1   原料的合成

    1, 5-二苯基-1, 4-二烯-3-酮1a~1o参考文献[17]合成, 3, 3'-(1, 2-亚苯基)二(1-苯基-2-烯-1-酮)4a~4q参考文献[18]合成.

    3.2.2   多取代环己酮产物的合成方法

    将25 mL的反应管放入红外干燥箱干燥20 min, 抽真空冷却到室温后, 换入氮气, 然后加入10 mol%的IPr, 以及46.8 mg (0.2 mol)烯酮化合物1a置于该反应管中, 抽真空20 min, 再换氮气, 如此反复三次, 再在氮气的保护下加入1.0 mL无水DMF, 搅拌溶解后, 用微量注射器加入29.7 mg (0.3 mmol)氰基乙酸甲酯, 在室温下搅拌反应10 h, 薄层色谱(TLC)跟踪监测, 反应结束后, 加入一定量的水, 再加入乙酸乙酯(5 mL×3)萃取, 用无水Na2SO4干燥, 浓缩有机相通过硅胶柱层析分离得到28.9 mg纯净的白色固体3a [V(石油醚):V(乙酸乙酯)=10:1], 产率为87%.以相同方法合成化合物3b~3o.

    2, 6-二苯基环己烷-1-氰基-4-氧代-1-甲酸甲酯(3a)[19]:白色固体, 产率87%. m.p. 159.3~159.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.39~7.28 (m, 8H), 7.19~7.13 (m, 2H), 4.00~3.94 (m, 2H), 3.40 (s, 3H), 3.22~3.14 (m, 2H), 3.08~3.02 (m, 1H), 2.85~2.79 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 137.3, 136.6, 128.85, 128.77, 128.7, 128.5, 128.42, 128.41, 118.3, 55.7, 53.8, 48.2, 42.9, 42.4, 41.7.

    2, 6-二对甲苯基环己烷-1-氰基-4-氧代-1-甲酸甲酯(3b):白色固体, 产率60%. m.p. 167.2~169.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.24 (d, J=8.2 Hz, 2H), 7.19~7.12 (m, 4H), 7.04 (d, J=8.2 Hz, 2H), 3.98~3.89 (m, 2H), 3.46 (s, 3H), 3.21~3.02 (m, 3H), 2.84~2.79 (m, 1H), 2.35 (d, J=8.5 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ: 207.4, 166.7, 138.6, 138.2, 134.4, 133.7, 129.5, 128.4, 128.3, 118.5, 99.9, 55.7, 53.1, 47.9, 43.2, 42.0, 41.9, 21.2; IR (KBr) ν: 2956, 1751, 1682, 1582, 1389, 1223, 1029, 882, 755, 675, 611 cm-1; HRMS (ESI) calcd for C23H24NO3 (M+H)+ 362.17507, found 362.17507.

    2, 6-双-(4-甲氧基苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3c):白色固体, 产率70%. m.p. 159.3~159.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.27 (dd, J=8.8, 2.2 Hz, 2H), 7.11~7.06 (m, 2H), 6.91~6.84 (m, 4H), 3.96~3.88 (m, 2H), 3.81 (d, J=6.2 Hz, 6H), 3.47 (s, 3H), 3.19~3.09 (m, 2H), 3.06~3.00 (m, 1H), 2.82~2.77 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 207.4, 166.8, 159.4, 129.6, 129.5, 128.6, 114.1, 55.9, 55.3, 55.2, 53.2, 47.5, 43.1, 42.0, 41.6; IR (KBr) ν: 2953, 1730, 1611, 1590, 1337, 1250, 1075, 822, 741, 660, 628 cm-1; HRMS (ESI) calcd for C23H24NO5 (M+H)+ 394.16490, found 394.16534.

    2, 6-双-(4-溴苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3d):白色固体, 产率84%. m.p. 185.6~190.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.54~7.45 (m, 4H), 7.25~7.19 (m, 2H), 7.07~7.01 (m, 2H), 3.99~3.85 (m, 2H), 3.49 (s, 3H), 3.19~3.00 (m, 3H), 2.82~2.77 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 206.1, 166.3, 136.0, 132.1, 132.0, 130.2, 130.0, 123.1, 122.7, 55.2, 53.5, 47.5, 42.6, 41.9, 41.5. IR (KBr) ν: 2923, 2246, 1729, 1491, 1410, 1242, 1079, 1005, 824, 718, 628 cm-1; HRMS (ESI) calcd for C21H18Br2NO3 (M+H)+ 489.96480, found 489.96653.

    2, 6-双-(4-氯苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3e):白色固体, 产率85%. m.p. 185.0~186.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.39~7.24 (m, 6H), 7.10 (d, J=8.5 Hz, 2H), 3.99~3.89 (m, 2H), 3.48 (s, 3H), 3.20~3.00 (m, 3H), 2.83~2.78 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 206.2, 166.3, 135.5, 134.9, 134.5, 129.9, 129.7, 129.13, 129.05, 117.8, 55.3, 53.5, 47.5, 42.7, 41.9, 41.5; IR (KBr) ν: 3057, 1715, 1515, 1242, 1014, 819, 716, 660 cm-1; HRMS (ESI) calcd for C21H18Cl2NO3 (M+H)+ 402.06583, found 402.06540.

    2, 6-双-(4-氟苯基)-1-氰基--4-氧代环己烷-1-甲酸甲酯(3f):白色固体, 产率85%. m.p. 172.5~174.0 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.36~7.30 (m, 2H), 7.19~7.13 (m, 2H), 7.11~7.02 (m, 4H), 4.00~3.92 (m, 2H), 3.47 (s, 3H), 3.21~3.11 (m, 2H), 3.07~3.01 (m, 1H), 2.84~2.79 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 206.5, 166.5, 161.4, 132.88, 132.85, 132.3, 130.3, 130.2, 130.2, 130.1, 118.0, 116.0, 115.9, 115.8, 115.7, 55.7, 53.4, 47.3, 42.8, 41.8, 41.6; IR (KBr) ν: 2954, 1715, 1494, 1407, 1257, 1076, 1012, 827, 666 cm-1; HRMS (ESI) calcd for C21H18F2NO3 (M+H)+ 370.12493, found 370.12543.

    2, 6-双-(3-溴苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3g):白色固体, 产率88%. m.p. 184.7~186.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.50 (t, J=8.7 Hz, 4H), 7.26~7.20 (m, 2H), 7.04 (d, J=8.4 Hz, 2H), 3.97~3.87 (m, 2H), 3.49 (s, 3H), 3.19~3.09 (m, 2H), 3.07~3.01 (m, 1H), 2.84~2.76 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 166.3, 136.0, 135.4, 132.1, 132.0, 130.2, 130.0, 123.1, 55.1, 53.5, 47.5, 42.6, 41.97, 41.96, 41.5; IR (KBr) ν: 2958, 2242, 1754, 1688, 1596, 1451, 1365, 1240, 1045, 996, 752, 689 cm-1; HRMS (ESI) calcd for C21H18- Br2NO3 (M+H)+ 489.96480, found 489.96890.

    2, 6-双-(3-氯苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3h):白色固体, 产率89%; m.p. 178.2~190.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.85 (dd, J=7.8, 1.5 Hz, 1H), 7.38 (td, J=7.8, 1.6 Hz, 1H), 7.36~7.27 (m, 4H), 7.23~7.18 (m, 2H), 4.76~4.73 (m, 1H), 4.58~4.54 (m, 1H), 3.50 (s, 3H), 3.36~3.30 (m, 1H), 3.03~2.86 (m, 3H); 13C NMR (101 MHz, CDCl3) δ: 165.7, 135.5, 135.1, 134.9, 134.3, 130.2, 130.0, 129.9, 129.4, 129.3, 127.7, 127.3, 127.0, 53.5, 52.9, 44.5, 43.4, 43.3, 37.6; IR (KBr) ν: 2953, 1752, 1722, 1477, 1436, 1251, 1090, 1037, 920, 758, 607, 497 cm-1; HRMS (ESI) calcd for C21H18Cl2NO3 (M+H)+ 402.06583, found 402.06540.

    2, 6-双-(2-氯苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3i):白色固体, 产率81%. m.p. 177.8~190.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.87 (dd, J=7.9, 1.4 Hz, 1H), 7.44~7.29 (m, 5H), 7.25~7.20 (m, 2H), 3.07~3.01 (m, 1H), 3.53 (s, 3H), 3.36~3.30 (m, 1H), , 3.06~2.89 (m, 3H); 13C NMR (101 MHz, CDCl3) δ: 205.7, 165.7, 135.5, 134.9, 134.3, 130.2, 129.94, 129.88, 129.4, 129.3, 127.7, 127.3, 127.0, 53.5, 52.8, 44.5, 43.4, 43.3, 37.6; IR (KBr) ν: 2953, 2230, 1749, 1722, 1479, 1435, 1090, 1251, 1090, 1035, 920, 755, 607 cm-1; HRMS (ESI) calcd for C21H18Cl2NO3 (M+H)+ 402.06583, found 402.06540.

    2, 6-双-(2-甲氧基苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3j):白色固体, 产率85%; m.p. 157.1~158.4 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.74 (dd, J=7.8, 1.6 Hz, 2H), 7.32~7.27 (m, 2H), 3.07~3.01 (m, 1H), 3.84 (s, 6H), 3.34 (s, 3H), 3.17~3.07 (m, 2H), 2.77~2.72 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 156.5, 129.2, 127.2, 125.8, 120.9, 117.7, 110.7, 56.1, 55.5, 52.8, 44.4, 41.2; IR (KBr) ν: 2839, 1716, 1587, 1492, 1462, 1242, 1119, 1024, 750, 652 cm-1; HRMS (ESI) calcd for C23H24NO5 (M+ H)+ 394.16490, found 394.16531.

    2, 6-双-(2-甲苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3k):白色固体, 产率70%. m.p. 167.7~169.1 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.71 (dd, J=7.7, 1.0 Hz, 1H), 7.27~7.08 (m, 7H), 4.47~4.28 (m, 2H), 3.46 (s, 3H), 3.23~3.17 (m, 1H), 3.11~3.00 (m, 2H), 2.95~2.86 (m, 1H), 2.27 (s, 3H), 2.24 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 207.0, 166.8, 136.9, 136.6, 135.8, 131.2, 128.4, 127.9, 127.5, 126.8, 126.4, 126.2, 118.8, 53.6, 53.2, 44.6, 43.4, 37.4, 19.60, 19.57; IR (KBr) ν: 2956, 1751, 1682, 1582, 1389, 1223, 1029, 882, 755, 675, 611 cm-1; HRMS (ESI) calcd for C23H24NO3 (M+H)+ 362.17507, found 362.17507.

    2, 6-二(萘-2-基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3l):白色固体, 产率85%. m.p. 164.7~166.1 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95 (dd, J=7.9, 1.6 Hz, 2H), 7.45~7.34 (m, 4H), 7.28 (td, J=7.9, 1.6 Hz, 2H), 4.54~4.50 (m, 2H), 3.43 (s, 3H), 3.16~3.05 (m, 2H), 2.87~2.78 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 203.3, 134.5, 133.8, 130.3, 129.6, 127.8, 127.7, 56.4, 53.3, 44.5, 44.1; IR (KBr) ν: 2975, 1747, 1719, 1575, 1294, 1243, 1051, 882, 666, 609 cm-1; HRMS (ESI) calcd for C29H24NO3 (M+H)+ 434.17507, not found.

    2, 6-二(噻吩-2-基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3m):白色固体, 产率85%. m.p. 159.3~159.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.36~7.27 (m, 3H), 7.13~7.08 (m, 2H), 6.87 (dd, J=5.0, 1.4 Hz, 1H), 4.13 (t, J=5.8 Hz, 1H), 3.07~3.01 (m, 1H), 3.63~3.55 (m, 3H), 3.22~2.97 (m, 3H), 2.89~2.81 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 206.5, 166.4, 138.2, 137.1, 127.5, 127.2, 126.5, 125.9, 124.0, 123.8, 123.4, 118.1, 54.9, 43.89, 43.87, 42.6, 38.4; IR (KBr) ν: 3105, 2954, 2242, 1741, 1431, 1332, 1260, 1026, 918, 783, 680 cm-1; HRMS (ESI) calcd for C17H16NO3S2 (M+H)+ 346.05661, found 346.05624.

    2-(4-甲氧基苯基)-6-(对甲苯基)-1-氰基-4-氧代环己烷-1-甲酸甲酯(3n):白色固体, 产率71%. m.p. 159.3~159.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.28~7.21 (m, 2H), 7.16 (t, J=7.5 Hz, 2H), 7.11~7.02 (m, 2H), 6.91~6.84 (m, 2H), 3.97~3.89 (m, 2H), 3.81 (d, J=6.7 Hz, 3H), 3.46 (d, J=1.8 Hz, 3H), 3.20~3.00 (m, 3H), 2.85~2.76 (m, 1H), 2.35 (d, J=7.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 207.5, 166.7, 159.7, 159.4, 133.7, 129.7, 129.53, 129.50, 129.4, 129.3, 128.31, 128.25, 114.1, 114.0, 55.8, 55.7, 55.3, 55.2, 53.20, 53.15, 47.8, 47.5, 43.3, 43.0, 42.0, 41.9; IR (KBr) ν: 2839, 1716, 1587, 1492, 1462, 1242, 1119, 1024, 750, 652 cm-1; HRMS (ESI) calcd for C23H24NO4 (M+H)+ 378.16998, found 378.17001.

    2, 6-二苯基环己烷-1-氰基-4-氧代-1-甲酸乙酯(3o):白色固体, 产率74%. m.p. 86~87 ℃ (lit.[20c] 86~87 ℃); 1H NMR (400 MHz, CDCl3) δ: 7.25 (q, J=7.5, 6.9 Hz, 6H), 7.18~7.12 (m, 4H), 4.39~4.35 (m, 2H), 4.02~3.93 (m, 2H), 3.57~3.48 (m, 2H), 3.12~3.05 (m, 2H), 2.93~2.88 (m, 2H), 0.89~0.86 (m, 6H); 13C NMR (101 MHz, CDCl3) δ: 210.1, 169.7, 139.9, 128.6, 128.1, 127.4, 63.8, 61.2, 43.7, 42.4, 13.4.

    3.2.3   多取代茚产物的合成方法

    将25 mL的反应管放入红外干燥箱干燥20 min, 抽真空冷却到室温后, 换入氮气, 然后加入10 mol%的IPr, 以及67.6 mg (0.2 mol)邻苯二烯酮化合物4a, 抽真空20 min, 再换氮气, 如此反复三次, 再在氮气的保护下加入1.0 mL无水DMF, 搅拌溶解后, 用微量注射器加入29.7 mg (0.3 mmol)氰基乙酸甲酯, 在室温下搅拌反应10 h, 薄层色谱(TLC)跟踪监测, 反应结束后, 加入一定量的水, 再加入乙酸乙酯(5 mL×3)萃取, 用无水Na2SO4干燥, 浓缩有机相通过硅胶柱层析分离得到42.4 mg纯净的白色固体5a [V(石油醚):V(乙酸乙酯)=10:1], 产率为97%.以相同方法合成化合物5b~5q.

    1, 3-双-(2-氧-2-苯基乙基)-2-氰基-2, 3-二氢-1H-茚- 2-羧酸甲酯(5a):白色固体, 产率97%. m.p. 124.0~125.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.11~8.07 (m, 4H), 7.67~7.61 (m, 2H), 7.56~7.49 (m, 4H), 7.33~7.27 (m, 2H), 7.20~7.14 (m, 2H), 4.67 (t, J=6.7 Hz, 2H), 3.95 (s, 3H), 3.86~3.80 (m, 2H), 3.71~3.64 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 197.2, 140.7, 136.3, 133.6, 128.7, 128.3, 128.2, 123.4, 116.90, 53.7, 47.3, 40.6; IR (KBr) ν: 2908, 2237, 1756, 1600, 1451, 1366, 1048, 1000, 753, 685 cm-1; HRMS (ESI) calcd for C28H24NO4 (M+ H)+ 438.16998, found 438.17014.

    1, 3-双-(2-(4-氟苯基)-2-氧乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5b):白色固体, 产率94%. m.p. 166.5~167.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.11~8.06 (m, 4H), 7.29 (dd, J=3.28, 5.56 Hz, 2H), 7.19~7.11 (m, 6H), 4.62 (t, J=6.96 Hz, 2H), 3.92 (s, 3H), 3.81~3.75 (m, 2H), 3.67~3.60 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 195.6, 168.7, 164.8, 140.6, 132.7, 130.9, 130.2, 128.4, 123.4, 116.8, 115.8, 62.2, 53.8, 40.54; IR (KBr) ν: 2914, 1747, 1684, 1594, 1361, 1228, 1205, 1150, 837, 624 cm-1; HRMS (ESI) calcd for C28H22F2NO4 (M+H)+ 474.15114, found 474.15173.

    1, 3-双-(2-(4-氯苯基)-2-氧乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5c):白色固体, 产率92%. m.p. 178.5~179.5 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.01~7.97 (m, 4H), 7.79~7.46 (m, 4H), 7.29 (dd, J=3.42, 5.72 Hz, 2H), 7.12~7.10 (m, 2H), 4.62 (t, J=6.8 Hz, 2H), 3.91 (s, 3H), 3.80~3.74 (m, 2H), 3.66~3.59 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 168.6, 140.5, 140.2, 134.6, 129.6, 129.1, 128.5, 123.4, 62.5, 47.3, 40.6; IR (KBr) ν: 2915, 1733, 1681, 1587, 1399, 1355, 1255, 1008, 804, 657 cm-1; HRMS (ESI) calcd for C28H22Cl2NO4 (M+H)+ 506.0920, found 506.0920.

    1, 3-双-(2-(4-溴苯基)-2-氧代乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5d):白色固体, 产率97%. m.p. 191.3~192.4 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95~7.89 (m, 4H), 7.66~7.62 (m, 4H), 7.29 (dd, J=3.12, 5.6 Hz, 2H), 7.12~7.10 (m, 2H), 4.61 (t, J=6.8 Hz, 2H), 3.91 (s, 3H), 3.80~3.74(m, 2H), 3.65~3.59 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 196.2, 168.6, 140.5, 134.9, 132.1, 129.7, 128.9, 128.5, 123.4, 53.8, 47.3, 40.6; IR (KBr) ν: 2916, 1759, 1478, 1359, 1243, 1068, 1002, 960, 767, 553 cm-1; HRMS (ESI) calcd for C28H22Br2NO4 (M+H)+ 593.9910, found 593.9910.

    1, 3-双-(2-(4-甲氧基苯基)-2-氧乙基)-2-氰基-2, 3-二氢-1H-茚-2-羧酸甲酯(5e):白色固体, 产率84%. m.p. 200.0~202.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.06~8.02 (m, 4H), 7.27~7.25 (m, 2H), 7.13~7.10 (m, 2H), 6.98~6.95 (m, 4H), 4.65 (t, J=6.7 Hz, 2H), 3.885 (d, J=4.6 Hz, 9H), 3.79~3.73 (m, 2H), 3.63~3.57 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 195.6, 163.9, 130.6, 129.5, 128.3, 123.4, 113.9, 62.4, 55.5, 53.7, 47.4, 40.2; IR (KBr) ν: 2839, 1716, 1587, 1492, 1462, 1242, 1119, 1024, 750, 652 cm-1; HRMS (ESI) calcd for C30H28NO6 (M+H)+ 498.19111, found 498.19122.

    1, 3-双-(2-(4-甲苯基)-2-氧乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5f):白色固体, 产率95%. m.p. 145.6~146.6 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=8.28 Hz, 4H), 7.30~7.24 (m, 6H), 7.12~7.10 (m, 2H), 4.63 (t, J=6.64 Hz, 2H), 3.90 (s, 3H), 3.82~3.76 (m, 2H), 3.66~3.59 (m, 2H), 2.43 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 196.8, 144.5, 140.8, 133.9, 129.4, 128.4, 128.3, 123.4, 62.3, 53.6, 47.4, 40.5, 21.6; IR (KBr) ν: 2839, 1716, 1587, 1492, 1462, 1242, 1119, 1024, 750, 652 cm-1; HRMS (ESI) calcd for C30H28NO4 (M+H)+ 466.2013, found 466.2013.

    1, 3-双-(2-(3-氯苯基)-2-氧乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5g):白色固体, 产率95%. m.p. 179.6~181.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.01 (t, J=1.8 Hz, 2H), 7.95~7.91 (m, 2H), 7.59~7.57 (m, 2H), 7.45 (t, J=7.9 Hz, 2H), 7.30~7.27 (m, 2H), 7.13~7.11 (m, 2H), 4.61 (t, J=6.7 Hz, 2H), 3.94 (s, 3H), 3.82~3.76 (m, 2H), 3.67~3.60 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 140.4, 137.8, 135.2, 133.6, 130.2, 128.5, 128.3, 126.4, 123.4, 62.1, 53.8, 47.3, 40.8; IR (KBr) ν: 2918, 1750, 1683, 1582, 1375, 1233, 1165, 1029, 822, 676 cm-1; HRMS (ESI) calcd for C28H22Cl2NO4 (M+H)+ 506.0920, found 506.0924.

    1, 3-双-(2-(2-氯苯基)-2-氧乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5h):白色固体, 产率87%. m.p. 113.5~114.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.66~7.64 (m, 2H), 7.50~7.43 (m, 4H), 7.41~7.37 (m, 2H), 7.34~7.31 (m, 2H), 7.21~7.19 (m, 2H), 4.65~4.61 (m, 2H), 4.01 (s, 3H), 3.88~3.82 (m, 2H), 3.66~3.59 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 200.2, 140.3, 132.2, 131.0, 130.7, 129.3, 128.5, 127.2, 123.4, 116.7, 62.1, 53.9, 47.6, 45.0; IR (KBr) ν: 2915, 1741, 1695, 1588, 1431, 1359, 1236, 1071, 864, 747 cm-1; HRMS (ESI) calcd for C28H22Cl2NO4 (M+H)+ 506.09204, found 506.09235.

    1, 3-双-(2-(萘-2-基)-2-氧代乙基)-2-氰基-2, 3-二氢- 1H-茚-2-羧酸甲酯(5i):白色固体, 产率86%. m.p. 168.2~169.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.63 (s, 2H), 8.15 (dd, J=8.6, 1.8 Hz, 2H), 8.03 (dd, J=8.1, 1.3 Hz, 2H), 8.00~7.91 (m, 4H), 7.68~7.59 (m, 4H), 7.35~7.30 (m, 2H), 7.25~7.19 (m, 2H), 4.76 (t, J=6.7 Hz, 2H), 4.02~3.95 (m, 5H), 3.86~3.79 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 197.1, 168.7, 140.8, 135.8, 133.6, 132.5, 130.2, 129.7, 128.8, 128.7, 128.4, 127.8, 126.9, 62.4, 53.8, 47.4, 40.6; IR (KBr) ν: 2839, 1716, 1587, 1492, 1462, 1242, 1119, 1024, 750, 652 cm-1; HRMS (ESI) calcd for C36H28NO4 (M+H)+ 538.2013, found 538.2014.

    1, 3-双-(2-氧丙基)-2-氰基-2, 3-二氢-1H-茚-2-羧酸甲酯(5j):白色固体, 产率97%. m.p. 107.7~108.0 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.27~7.25 (m, 2H), 7.05~7.02 (m, 2H), 4.35~4.32 (m, 2H), 3.91 (s, 3H), 3.29~3.23 (m, 2H), 3.13~3.06 (m, 2H), 2.29 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 205.7, 140.4, 128.3, 123.1, 116.6, 61.7, 53.7, 47.1, 45.3, 30.2; IR (KBr) ν: 2920, 1751, 1683, 1458, 1353, 1254, 1029, 882, 760, 676 cm-1; HRMS (ESI) calcd for C18H20NO4 (M+H)+ 314.1387, found 314.1393.

    1-(2-(4-溴苯基)-2-氧乙基)-3-(2-(4-氯苯基)-2-氧乙基)-2-氰基-2, 3-二氢-1H-茚-2-羧酸甲酯(5l):白色固体, 产率93%. m.p. 176.1~178.0 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.00~7.97 (m, 2H), 7.92~7.89 (m, 2H), 7.64 (d, J=8.5 Hz, 2H), 7.47 (d, J=8.5 Hz, 2H), 7.30~7.27 (m, 2H), 7.13~7.10 (m, 2H), 4.61 (t, J=6.7 Hz, 2H), 3.91 (s, 3H), 3.78~3.71 (m, 2H), 3.63~3.56 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 196.2, 168.6, 140.5, 134.9, 134.6, 129.7, 129.1, 128.9, 128.5, 123.4, 62.2, 53.8, 47.3, 40.6; IR (KBr) ν: 2929, 1715, 1634, 1455, 1380, 1309, 1178, 1092, 882, 668 cm-1; HRMS (ESI) calcd for C28H22BrClNO4 (M+H)+ 550.04152, found 550.0415.

    1-(2-(4-氟苯基)-2-氧代乙基)-3-(2-氧代-2-苯基乙基)-2-异氰基-2, 3-二氢-1H-茚-2-羧酸甲酯(5m):白色固体, 产率80%. m.p. 179.3~189.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.10~8.04 (m, 4H), 7.63~7.59 (m, 1H), 7.53~7.48 (m, 2H), 7.28 (dd, J=3.16, 5.48 Hz, 2H), 7.19~7.11 (m, 4H), 4.65~4.61 (m, 2H), 3.91 (s, 3H), 3.79~3.73 (m, 2H), 3.67~3.57 (m, 2H); 13C NMR (101 MHz, CDCl3) δ: 195.6, 168.7, 140.7, 136.3, 133.7, 132.8, 132.7, 131.0, 130.9, 128.8, 128.4, 128.3, 123.5, 123.4, 116.9, 116.0, 115.8, 62.3, 53.7, 47.4, 47.3, 40.63, 40.56; IR (KBr) ν: 2919, 1745, 1682, 1582, 1458, 1390, 1202, 1029, 819, 675 cm-1; HRMS (ESI) calcd for C28H23FNO4 (M+H)+ 456.1606, found 456.1607.

    1-(2-(4-甲氧基苯基)-2-氧代乙基)-3-(2-氧代-2-(对甲苯基)乙基)-2, 3-二氢-1H-茚-2-羧酸甲酯(5n):白色固体, 产率71%. m.p. 172.1~173.6 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.05~8.02 (m, 2H), 7.95 (d, J=8.2 Hz, 2H), 7.30~7.25 (m, 4H), 7.13~7.10 (m, 2H), 6.98~6.94 (m, 2H), 4.62 (t, J=8.12 Hz, 2H), 3.89 (m, 6H), 3.79~3.70 (m, 2H), 3.62~3.54 (m, 2H), 2.43 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 196.8, 163.9, 144.5, 140.8, 133.9, 130.6, 128.4, 128.3, 123.43, 123.40, 116.9, 113.9, 62.4, 55.5, 53.7, 47.4, 47.3, 40.4, 40.2, 21.7; IR (KBr) ν: 2911, 1732, 1677, 1606, 1480, 1362, 1180, 1042, 749, 686 cm-1; HRMS (ESI) calcd for C30H28NO5 (M+H)+ 482.1962, found 482.1963.

    1-(2-氧代-2-(对甲苯基乙基)-3-(2-氧代-2-苯乙基)-2-异氰基-2, 3-二氢-1H-茚-2-羧酸甲酯(5o):白色固体, 产率92%. m.p. 168.3~169.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.11~8.06 (m, 2H), 7.99 (d, J=8.3 Hz, 2H), 7.67~7.61 (m, 1H), 7.57~7.50 (m, 2H), 7.35~7.26 (m, 4H), 7.19~7.12 (m, 2H), 4.66 (t, J=6.7 Hz, 2H), 3.97~3.92 (m, 3H), 3.86~3.77 (m, 2H), 3.71~3.59 (m, 2H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 197.2, 168.7, 144.5, 140.8, 136.3, 133.9, 133.6, 129.4, 128.8, 128.4, 128.3, 123.5, 123.4, 62.3, 53.7, 47.4, 47.3, 40.6, 40.5, 21.7; IR (KBr) ν: 2954, 1732, 1677, 1606, 1480, 1362, 1180, 1042, 749, 686 cm-1; HRMS (ESI) calcd for C29H26NO4 (M+H)+ 452.1856, found 452.1856.

    1, 3-双-(2-氧代-2-苯乙基)-2-氰基-2, 3-二氢-1H-茚-2-羧酸乙酯(5p):白色固体, 产率98%. m.p. 140.1~140.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.07~8.04 (m, 4H), 7.62~7.58 (m, 2H), 7.51~7.47 (m, 4H), 7.27~7.24 (m, 2H), 7.13~7.11 (m, 2H), 4.64 (t, J=6.6 Hz, 2H), 4.44~4.39 (m, 2H), 3.85~3.79 (m, 2H), 3.71~3.65 (m, 2H), 1.29 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 197.1, 140.8, 136.3, 128.7, 128.3, 128.2, 123.4, 117.0, 63.1, 62.4, 47.2, 40.6, 13.96; IR (KBr) ν: 2239, 1743, 1679, 1594, 1449, 1364, 1288, 1243, 1049, 1000, 856, 759, 689 cm-1; HRMS (ESI) calcd for C29H26NO4 (M+H)+ 452.18563, found 452.18524.

    2-异氰基-1, 3-双-(2-氧代-2-苯乙基)-2, 3-二氢-1H-茚-2-腈(5q):白色固体, 产率89%. m.p. 140.1~140.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.13 (d, J=7.5 Hz, 2H), 8.05 (d, J=7.6 Hz, 2H), 7.70~7.63 (m, 2H), 7.59~7.51 (m, 4H), 7.31~7.28 (m, 2H), 7.25~7.23 (m, 1H), 7.12~7.10 (m, 1H), 4.77~4.73 (m, 1H), 4.65~4.62 (m, 1H), 3.88~3.69 (m, 3H), 3.65~3.59 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.0, 195.9, 139.5, 139.3, 136.0, 134.1, 133.9, 129.2, 129.0, 128.9, 128.4, 128.3, 124.9, 123.0, 48.4, 48.1, 45.1, 40.7, 40.2; IR (KBr) ν: 2895, 1687, 1580, 1449, 1355, 1235, 1000, 947, 749, 693 cm-1; HRMS (ESI) calcd for C27H21N2O2 (M+H)+ 405.15975, found 405.15955.

    辅助材料(Supporting Information)   化合物3n5d的单晶数据、所有化合物的1H NMR和13C NMR谱图以及催化剂A的合成方法.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.


    1. [1]

      (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
      (b) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182.
      (c) Hopkinson, N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
      (d) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
      (e) Ye, M.; Shen, P.-P.; Duan, W.-Z.; Song, C.; Ma, Y.-D. Chin. J. Org. Chem. 2017, 37, 2919 (in Chinese).
      (叶梦, 申盼盼, 段文增, 宋淳, 马玉道, 有机化学, 2017, 37, 2919.)
      (f) Ju, L.; Ma, C.-M.; Tang, M.; Wang, Y.-H.; Yu, X.-H.; Mang, H.-M. Chin. J. Org. Chem. 2018, 38, 3056 (in Chinese).
      (巨磊, 马春梅, 唐蜜, 王妍卉, 虞心红, 马红梅, 有机化学, 2018, 38, 3056.)

    2. [2]

      (a) Langdon, S. M.; Wilde, M. M. D.; Thai, K.; Gravel, M. J. Am. Chem. Soc. 2014, 136, 7539.
      (b) Kuhl, N.; Glorius, F. Chem. Commun. 2011, 47, 573.
      (c) Jia, M.-Q.; You, S.-L. ACS Catal. 2013, 3, 622.
      (d) Sun, L.-H.; Liang, Z.-Q.; Jia, W.-Q.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 5803.
      (e) Di Rocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904.

    3. [3]

      (a) Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284.
      (b) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932.
      (c) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066.
      (d) Enders, D.; Han, J. W.; Henseler, A. Chem. Commun. 2008, 34, 3989.
      (e) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190.
      (f) Zhang, J.; Xing, C.; Tiwari, B.; Chi, Y. R. J. Am. Chem. Soc. 2013, 135, 8113.

    4. [4]

      (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
      (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.
      (c) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634.
      (d) Lv, H.; Jia, W.-Q.; Sun, L.-H.; Ye, S. Angew. Chem. Int. Ed. 2013, 52, 8607.
      (e) Zhu, T.-S.; Mou, C.-L.; Li, B.-S.; Smetankova, M.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.

    5. [5]

      (a) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796.
      (b) Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Org. Lett. 2007, 9, 3519.
      (c) Mo, J.; Chen, X.; Chi, Y.-R. J. Am. Chem. Soc. 2012, 134, 8810.
      (d) Izquierdo, J.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634.
      (e) Candish, L.; Levens, A.; Lupton, D. W. Chem. Sci. 2015, 6, 2366.

    6. [6]

      (a) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett. 2008, 10, 277.
      (b) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192.
      (c) Jian, T.-Y.; He, L.; Tang, C.; Ye, S. Angew. Chem., Int. Ed. 2011, 50, 9104.
      (d) Shao, P.-L.; Chen, X.-Y.; Ye, S. Angew. Chem., Int. Ed. 2010, 49, 8412.
      (e) Jian, T.-Y.; Chen, X.-Y.; Sun, L.-H.; Ye, S. Org. Biomol. Chem. 2013, 11, 158.
      (f) Shen, L.; Jia, W.; Ye, S. Chin. J. Chem. 2014, 32, 814.

    7. [7]

      (a) Fu, Z.-Q.; Xu, J.-F.; Zhu, T.-S.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835.
      (b) Huang, Z.-J.; Huang, X.; Li, B.-S.; Mou, C.-L.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.
      (c) Wu, X.-X.; Hao, L.; Zhang, Y.-X.; Rakesh, M.; Reddi, R. N.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int. Ed. 2017, 56, 4201.
      (d) Fu, Z.-Q.; Wu, X.-X.; Chi, Y. R. Org. Chem. Front. 2016, 3, 145.
      (e) Jin, Z.-C.; Chen, S.-J.; Wang, Y.; Zheng, P.-C.; Yang, S.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 13506.
      (f) Cheng, J.-J.; Huang, Z.-J.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592.

    8. [8]

      Boddaert, T.; Coquerel, Y.; Rodriguez, J. Adv. Synth. Catal. 2009, 351, 1744. doi: 10.1002/adsc.200900292

    9. [9]

      Phillips, E. M.; Riedrich, M.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 13179. doi: 10.1021/ja1061196

    10. [10]

      Kang, Q.; Zhang, Y. Org. Biomol. Chem. 2011, 9, 6715. doi: 10.1039/c1ob05429e

    11. [11]

      (a) Guo, H.; Xing, F.; Du, G.-F.; Huang, K. W.; Dai, B.; He, L. J. Org. Chem. 2015, 80, 12606.
      (b) Li, Y.-Z.; Wang, Y.; Du, G. F.; Zhang, H. Y.; Yang, H. L.; He, L. Asian J. Org. Chem. 2015, 4, 327.
      (c) Cong, Z. S.; Li, Y. G.; Du, G. F.; Gu, C. Z.; Dai, B.; He, L. Chem. Commun. 2017, 53, 13129.
      (d) Xing, F.; Feng, Z.-N.; Wang, Y.; Du, G.; Gu, C.; Dai, B.; He, L. Adv. Synth. Catal. 2018, 360, 1704.
      (e) Feng, Z.-N.; Luo, J.-Y.; Zhang, Y.; Du, G.-F.; He, L. Org. Biomol. Chem. 2019, 17, 4700.
      (f) Zhang, J.; Du, G.-F.; Gu, C.-Z.; Dai, B. Chin. J. Org. Chem. 2017, 37, 914 (in Chinese).
      (张洁, 杜广芬, 顾承志, 代斌, 有机化学, 2017, 37, 914.)

    12. [12]

      (a) Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184.
      (b) Chen, J.; Huang, Y. Nat. Commun. 2014, 5, 3437.
      (c) Wang, L.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 15414.
      (d) Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045.

    13. [13]

      (a) Gabriele, B.; Mancuso, R.; Veltri, L. Chem.-Eur. J. 2016, 22, 5056.
      (b) Borie, C.; Ackermann, L.; Nechab, M. Chem. Soc. Rev. 2016, 45, 136.

    14. [14]

      (a) Zhang, Y.; Li, R.; He, Y.-H.; Guan, Z. Catal. Lett. 2017, 147, 633.
      (b) Xu, D.-Z.; Zhan, M.-Z.; Huang, Y. Tetrahedron 2014, 70, 176.
      (c) Breden kötter, B.; Linke, J.; Kuck, D. Eur. J. Org. Chem. 2017, 2017, 4414.
      (d) Liu, C.-H.; Xu, Y.-L.; Niu, S.-Y.; Wei, L.-Q.; Liu, Y.; Wang, Y.-B.; Zhu, J.-Y.; Fu, J.-Y.; Yuan, J.-F. Chin. J. Chem. 2017, 35, 1231.
      (e) Li, X.; Wang, B.; Zhang, J.; Yan, M. Org. Lett. 2011, 13, 374.

    15. [15]

      (a) Sun, H.-Y.; Xu, S.-Y.; Xing, Z.-M.; Liu, L.; Feng, S.-B.; Fang, B.; Xie, X.-G.; She, X.-G. Org. Chem. Front. 2017, 4, 2109.
      (b) Wang, Z.-Y.; Ding, Y.-L.; Wang, G.; Cheng, Y. Chem. Commun. 2016, 52, 788.
      (c) Li, Y.; Wang, X.-Q.; Zheng, C.; You, S. L. Chem. Commun. 2009, 5823.
      (d) Mueller, D. J.; Schedler, M.; Fleige, M.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 12492.
      (e) Fan, X.-W.; Cheng, Y. Org. Biomol. Chem. 2014, 12, 123.
      (f) Biswas, A.; Sarkar, S. D.; Froehlich, R.; Studer, A. Org. Lett. 2011, 13, 4966.

    16. [16]

      (a) Li, J. T.; Xu, W. Z.; Chen, G.-F.; Li, T. S. Ultrason. Sonochem. 2005, 12, 473.
      (b) Yu, Y.-Q.; Wang, Z.-L. Chem. Res. Chin. Univ. 2013, 29, 1115.
      (c) Xu, D.-Z.; Zhan, M.-Z.; Huang, Y. Tetrahedron 2014, 70, 176.
      (d) Fusco, C. D.; Lattanzi, A. Eur. J. Org. Chem. 2011, 2011, 3728.
      (e) Li, X.-M.; Wang, B.; Zhang, J.-M.; Yan, M. Org. Lett. 2011, 13, 374.
      (f) Wu, L. Y.; Bencivenni, G.; Mancinelli, M.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7196.

    17. [17]

      Liu, X.; Xu, X.; Pan, L.; Zhang, Q.; Liu, Q. Org. Biomol. Chem. 2013, 11, 6703. doi: 10.1039/c3ob41400k

    18. [18]

      Mark, S. K.; Javier, R. A.; Rovis, T. J. Org. Chem. 2005, 70, 5725. doi: 10.1021/jo050645n

    19. [19]

      (a) Ramachary, D. B.; Reddy, Y. V.; Prakash, B. V. Org. Biomol. Chem. 2008, 6, 719.
      (b) Takaya, H.; Murahashi, S. I. Synlett 2001, 9, 991.

    20. [20]

      (a) Zhang, Y.; Li, R.; He, Y.-H.; Guan, Z. Catal. Lett. 2017, 147, 633.
      (b) Li, Y.-G.; Zhang, Y.; Du, G.-F.; Gu, C.-Z.; He, L. Lett. Org. Chem. 2019, 16, 76.

    21. [21]

      Arduengo, A. J.; Krafczyk, R.; Schmutzler, R. Terahedron 1999, 55, 14523. doi: 10.1016/S0040-4020(99)00927-8

  • 图 1  3n的X射线晶体结构

    Figure 1  Single crystal X-ray structure of 3n

    图 2  5d的X射线晶体结构

    Figure 2  Single crystal X-ray structure of 5d

    图式 1  氮杂环卡宾催化氰基酯的Michael反应机理

    Scheme 1  N-Heterocyclic carbene catalyzes Michael reaction of cyanoester

    表 1  反应条件的优化a

    Table 1.  Optimization of reaction conditions

    Entry Catalyst Base Solvent Yieldb/% drc
    1 A DMF 87 (71)d >20:1
    2 B tBuOK DMF 53 >20:1
    3 C tBuOK DMF 75 >20:1
    4 D tBuOK DMF 55 >20:1
    5 E tBuOK DMF 79 >20:1
    6 A THF 83 11:1
    7 A DCM 85 3:1
    8 A Toluene 66 8:1
    9 A CH3CN 75 3:1
    10 A DMSO 72 6:1
    11 A MeOH 85 5:1
    12e A DMF 79 >20:1
    a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), base (10 mol%), solvent 1.0 mL; b Isolated total yield of two diastereomers; c dr was determined by 1H NMR analysis of the crude reaction mixture. d 12 mol% NHC precursor IPr•HCl, 10 mol% tBuOK. e Using 5 mmol% NHC A.
    下载: 导出CSV

    表 2  反应底物普适性研究a

    Table 2.  Evaluation of substrate scope

    Entry Ar1 Ar2 R drb 3 Yieldc/%
    1 C6H5 C6H5 Me >20:1 3a 87
    2 4-CH3C6H4 4-CH3C6H4 Me >20:1 3b 60
    3 4-MeOC6H4 4-MeOC6H4 Me >20:1 3c 70
    4 4-BrC6H4 4-BrC6H4 Me >20:1 3d 84
    5 4-ClC6H4 4-ClC6H4 Me >20:1 3e 85
    6 4-FC6H4 4-FC6H4 Me 5:1 3f 85
    7 3-BrC6H4 3-BrC6H4 Me >20:1 3g 88
    8 3-ClC6H4 3-ClC6H4 Me >20:1 3h 89
    9 2-ClC6H4 2-ClC6H4 Me >20:1 3i 81
    10 2-CH3OC6H4 2-CH3OC6H4 Me 11:1 3j 85
    11 2-CH3C6H4 2-CH3C6H4 Me 5:1 3k 70
    12 β-Naphthyl β-Naphthyl Me >20:1 3l 85
    13 2-Thienyl 2-Thienyl Me 10:1 3m 85
    14 4-CH3OC6H4 4-CH3C6H4 Me 9:1 3n 71
    15c C6H5 C6H5 Et >20:1 3o 74
    a Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), solvent 1.0 mL; b dr was determined by 1H NMR analysis of the crude reaction mixture. cIsolated total yield of two diastereomers
    下载: 导出CSV

    表 3  反应底物普适性研究a

    Table 3.  Evaluation of substrate scope

    Entry R1 R2 EWG drb 5 Yieldc/%
    1 C6H5 C6H5 CO2Me >20:1 5a 97
    2 4-FC6H4 4-FC6H4 CO2Me >20:1 5b 94
    3 4-ClC6H4 4-ClC6H4 CO2Me >20:1 5c 92
    4 4-BrC6H4 4-BrC6H4 CO2Me >20:1 5d 97
    5 4-MeOC6H4 4-MeOC6H4 CO2Me >20:1 5e 84
    6 4-CH3C6H4 4-CH3C6H4 CO2Me >20:1 5f 95
    7 3-ClC6H4 3-ClC6H4 CO2Me >20:1 5g 95
    8 2-ClC6H4 2-ClC6H4 CO2Me >20:1 5h 87
    9 β-Naphthyl β-Naphthyl CO2Me >20:1 5i 86
    10 CH3 CH3 CO2Me >20:1 5j 97
    11 OEt OEt CO2Me 5k Trace
    12 4-BrC6H4 4-ClC6H4 CO2Me >20:1 5l 93
    13 4-FC6H4 C6H5 CO2Me >20:1 5m 80
    14 4-CH3C6H4 4-CH3OC6H4 CO2Me >20:1 5n 71
    15 4-CH3C6H4 C6H5 CO2Me >20:1 5o 92
    16 C6H5 C6H5 CO2Et >20:1 5p 98
    17 C6H5 C6H5 CN >20:1 5q 89
    a Reaction conditions: 4 (0.2 mmol), 2 (0.3 mmol), solvent 1.0 mL; b dr was determined by 1H NMR analysis of the crude reaction mixture; c Isolated total yield of two diastereomers.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  858
  • HTML全文浏览量:  192
文章相关
  • 发布日期:  2020-06-25
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-03-14
  • 网络出版日期:  2020-03-31
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章