Citation: Wang Xucai, Chen Ming, Zhang Wei, Zhang Yaodu, Ren Zhihui, Guan Zhenghui. Palladium-Catalyzed 5-exo-trig Hydroamidation of β, γ-Unsaturated Hydrazones for Synthesis of Dihydropyrazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1618-1624. doi: 10.6023/cjoc202002009 shu

Palladium-Catalyzed 5-exo-trig Hydroamidation of β, γ-Unsaturated Hydrazones for Synthesis of Dihydropyrazoles

  • Corresponding author: Guan Zhenghui, guanzhh@nwu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 8 February 2020
    Revised Date: 23 March 2020
    Available Online: 31 March 2020

    Fund Project: the Innovation Capability Support Program of Shaanxi Province 2020TD-022the National Natural Science Foundation of China 216222203Project supported by the National Natural Science Foundation of China (Nos. 21971204, 216222203, 21702161), the Innovation Capability Support Program of Shaanxi Province (No. 2020TD-022), and the Education Department of Shaanxi Province (No. 19JS064)the National Natural Science Foundation of China 21702161the National Natural Science Foundation of China 21971204the Education Department of Shaanxi Province 19JS064

Figures(5)

  • Hydroamination reaction is the addition of a N-H unit across the unsaturated C-C bond, which provides a convenient route for the formation of C-N bond. Considerable effort has been directed toward the development of multiple catalytic protocols for the hydroamination reaction in the past decades. Despite appreciable progress in this field, the development of general and practical strategy for the hydroamination of amides remains challenging, because the strong electron-with-drawing substituents (acyl, sulfonyl, or phosphinyl) strongly declined the nucleophilicity of the nitrogen. In this paper, a mild and efficient palladium-catalyzed 5-exo-trig hydroamidation of β, γ-unsaturated hydrazones for the synthesis of dihydropyrazoles has been developed. The reaction employs readily available starting materials, tolerates a wide range of functional groups, and produces a series of valuable dihydropyrazoles in good to high yields (63%~88%) under mild reaction conditions. Furthermore, a gram-scale hydroamidation of 1a afforded the dihydropyrazole 2a in 85% yield. In addition, the deuterium labeling experiment demonstrated that N-H is the hydrogen source in this hydroamidation process.
  • 加载中
    1. [1]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.  doi: 10.1021/cr0306788

    2. [2]

      Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.  doi: 10.1021/cr300389u

    3. [3]

      Bernoud, E.; Lepori, C.; Mellah, M.; Schulz, E.; Hannedouche, J. Catal. Sci. Technol. 2015, 5, 2017.  doi: 10.1039/C4CY01716A

    4. [4]

      Yang, X.-H.; Lu, A. Dong, V. M. J. Am. Chem. Soc. 2017, 139, 14049.  doi: 10.1021/jacs.7b09188

    5. [5]

      Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55, 48.  doi: 10.1002/anie.201507594

    6. [6]

      Gurak, J. A., Jr.; Yang, K. S.; Liu, Z.; Engle, K. M. J. Am. Chem. Soc. 2016, 138, 5805.  doi: 10.1021/jacs.6b02718

    7. [7]

      Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.  doi: 10.1002/anie.201510418

    8. [8]

      Cong, T.; Wang, H.; Liu, Y.; Wu, H.; Zhang, J. Chin. J. Org. Chem. 2019, 39, 2157 (in Chinese).
       

    9. [9]

      Zhang, S.; Hou, Z.; Song, Z.; Su, X.; Wang, F.; Yu, Y.; Peng, D.; Cui, S.; Liu, Y.; Wang, J.; Song, J. Acta Chim. Sinica 2019, 77, 1168 (in Chinese).  doi: 10.3866/PKU.WHXB201902026

    10. [10]

      Hesp, K. D.; Stradiotto, M. ChemCatChem 2010, 2, 1192.  doi: 10.1002/cctc.201000102

    11. [11]

      Qi, C.; Hasenmaile, F.; Gandon, V.; Leboeuf, D. ACS Catal. 2018, 8, 1734.  doi: 10.1021/acscatal.7b04271

    12. [12]

      Timmerman, J. C.; Laulhé, S.; Widenhoefer, R. A. Org. Lett. 2017, 19, 1466.  doi: 10.1021/acs.orglett.7b00450

    13. [13]

      Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.  doi: 10.1021/jacs.5b09671

    14. [14]

      Timmerman, J. C.; Robertson, B. D.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2015, 54, 2251.  doi: 10.1002/anie.201410871

    15. [15]

      Sevov, C. S.; Zhou, J.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 11960.  doi: 10.1021/ja3052848

    16. [16]

      Li, P.; Huang, D.; Yang, T.; Deng, Z.; Wang, K.; Wang, J.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2019, 39, 2920 (in Chinese).
       

    17. [17]

      Yang, Z.; Xia, C.; Liu, D.; Liu, Y.; Sugiya, M.; Imamoto, T.; Zhang, W. Org. Biomol. Chem. 2015, 13, 2694.  doi: 10.1039/C4OB02402H

    18. [18]

      McGhee, A.; Cochran, B. M.; Stenmark, T. A.; Michael, F. E. Chem. Commun. 2013, 49, 6800.  doi: 10.1039/c3cc44117b

    19. [19]

      Giles, R.; O'Neill, J.; Lee, J. H.; Chiu, M. K.; Jung, K. W. Tetrahedron Lett. 2013, 54, 4083.  doi: 10.1016/j.tetlet.2013.05.101

    20. [20]

      Xu, T.; Qiu, S.; Liu, G. J. Organomet. Chem. 2011, 696, 46.  doi: 10.1016/j.jorganchem.2010.07.015

    21. [21]

      Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786.  doi: 10.1021/ja0734997

    22. [22]

      Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc. 2006, 128, 4246.  doi: 10.1021/ja060126h

    23. [23]

      Pierson, J. M.; Ingalls, E. L.; Vo, R. D.; Michael, F. E. Angew. Chem., Int. Ed. 2013, 52, 13311.  doi: 10.1002/anie.201305766

    24. [24]

      Patil, N. T.; Huo, Z.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2006, 71, 3612.  doi: 10.1021/jo060142x

    25. [25]

      Narsireddy, M.; Yamamoto, Y. J. Org. Chem. 2008, 73, 9698.  doi: 10.1021/jo801785r

    26. [26]

      Panda, N.; Mothkuri, R. J. Org. Chem. 2012, 77, 9407.  doi: 10.1021/jo301772f

    27. [27]

      Banerjee, D.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 1630.  doi: 10.1002/anie.201308874

    28. [28]

      Yang, M.-N.; Yan, D.-M.; Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2017, 19, 5208.  doi: 10.1021/acs.orglett.7b02480

    29. [29]

      Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.  doi: 10.1021/np400124n

    30. [30]

      Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924.  doi: 10.1021/ja301196x

    31. [31]

      Zhao, P.-L.; Wang, F.; Zhang, M.-Z.; Liu, Z.-M.; Huang, W.; Yang, G.-F. J. Agric. Food Chem. 2008, 56, 10767.  doi: 10.1021/jf802343p

    32. [32]

      Camacho, M. E.; León, J.; Entrena, A.; Velasco, G.; Carrión, M. D.; Escames, G.; Vivó, A.; Acuña-Castroviejo, D.; Gallo, M. A.; Espinosa, A. J. Med. Chem. 2004, 47, 5641.  doi: 10.1021/jm0407714

    33. [33]

      Hu, S.-B.; Chen, M.-W.; Zhai, X.-Y.; Zhou, Y.-G. Acta Chim. Sinica 2018, 76, 103 (in Chinese).

    34. [34]

      Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 12163.  doi: 10.1002/anie.201406491

    35. [35]

      (a) Zhao, M.-N.; Zhang, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Sci. Bull. 2017, 62, 493.
      (b) Guo, Y.-Q.; Zhao, M.-N.; Ren, Z.-H.; Guan, Z.-H. Org. Lett. 2018, 20, 3337.

    36. [36]

      Liu, Y.-C.; Zheng, X.; Huang, P.-Q. Acta Chim. Sinica 2019, 77, 850 (in Chinese).  doi: 10.3866/PKU.WHXB201811040

    37. [37]

      Ren, P.; Qi, L.; Fang, Z.; Wu, T.; Gao, Y.; Shen, S.; Song, J.; Wang, L.; Li, W. Chin. J. Org. Chem. 2019, 39, 1776 (in Chinese).
       

    38. [38]

      Li, X.-F.; Lin, J.-S.; Wang, J.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Acta Chim. Sinica. 2018, 76, 878 (in Chinese).

    39. [39]

      Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.  doi: 10.1021/ol4014969

    40. [40]

      Fan, Z.; Pan, Z.; Huang, L.; Cheng, J. J. Org. Chem. 2019, 84, 4236.  doi: 10.1021/acs.joc.9b00228

    41. [41]

      Huang, P.-Q. Acta Chim. Sinica. 2018, 76, 357 (in Chinese).

    42. [42]

      Allen, J. R.; Bahamonde, A.; Furukawa, Y.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8670.  doi: 10.1021/jacs.9b01476

    43. [43]

      Bahamonde, A.; Al Rifaie, B.; Martín-Heras, V.; Allen, J. R.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8708.  doi: 10.1021/jacs.9b03438

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(11)
  • Abstract views(1012)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return