Metal-Free C-2 Alkylation of N-Oxides with Ethers via Radical Cross-Coupling Reactions

Daoqing Dong Guanghui Li Demao Chen Yuanyuan Sun Qingqing Han Zuli Wang Xinming Xu Xianyong Yu

Citation:  Dong Daoqing, Li Guanghui, Chen Demao, Sun Yuanyuan, Han Qingqing, Wang Zuli, Xu Xinming, Yu Xianyong. Metal-Free C-2 Alkylation of N-Oxides with Ethers via Radical Cross-Coupling Reactions[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1766-1771. doi: 10.6023/cjoc202002002 shu

无金属条件下通过与醚的自由基偶联反应实现N-氧化物的C-2烷基化反应

    通讯作者: 王祖利, wangzulichem@163.com
  • 基金项目:

    国家自然科学基金(No.21772107)、山东省重点研发计划(No.2019GSF108017)资助项目

    山东省重点研发计划 2019GSF108017

    国家自然科学基金 21772107

摘要: 在无金属条件下通过自由基偶联反应,实现了醚类与N-氧化物的C-2烷基化反应,反应条件温和,只需加入氧化剂二叔丁基过氧化物(DTBP)就能够以中等至高产率获得各种所需产物.

English

  • Quinoline-containing cyclic compounds are important nitrogen-containing heteroaromatics and are prevalent key structural motifs in bioactive natural products, synthetic drugs and materials.[1~9] Consequently, the development of mild and efficient methods for their construction is a hot topic in organic synthesis and pharmaceutical chemi- stry.[10~13] In view of the abundance and accessibility of quinoline N-oxides, the direct C-2 functionalization of quinoline N-oxides is an attractive alternative compared with these reported methods.[14~17] Recently, an environmental-friendly method for the clean preparation of various quinolin-2-yl substituted ureas from the reaction of quinoline N-oxides and carbodiimides was presented by He's group.[18] The first example of a metal and reductant-free deoxygenative sulfonylation of quinoline N-oxides with sodium sulfinates was also realized by this group. In this reaction, sodium sulfinates play dual roles of an oxidant and activating reagent.[19] Cui's group showed an approach to polyheterocycles bearing furoquinoline and C-2-male-imi- de-substituted quinoline via tandem reactions between quinoline N-oxides and maleimides.[20] The cross-dehydro- genative coupling of quinoline N-oxides with 1, 3-azoles was also developed by Cui and coworkers. The desired products were isolated in good to excellent yields.[21] Hartwig's group found that N-heterocyclic trifluoromethyl ethers could be efficiently synthesized via the reaction of N-oxides with trifluoromethyl or higher perfluoroalkyl triflate.[22] The reactions of quinoline N-oxide with other substrates such as terminal alkyne, [23] alcohols, [24] H-phos- phonates[25] and so on[26~30] were also reported in recent years.

    On the other hand, the direct functionalization of C(sp3)-H bond has attracted wide research interest both in academic laboratories and chemical industries.[31~38] Among these reactions, the functionalization of C(sp3)-H bonds adjacent to oxygen of alcohols was particularly powerful.[39~43] For examples, in 2013, Cui's group described a strategy for the direct alkylation of quinoline N-oxides with ethers. Quinoline-containing heterocyclic molecules in moderate to excellent yields could be obtained.[44] Li's group described a Fe-catalyzed cross-dehydrogenative-coupling reaction of ketone esters with ether for C-C bond formation.[45] Ethers such as 1, 4-dioxane were also good substrates to react with carboxylic acids[46] and 2-hydroxyacetophenone.[47] The cross-coup- ling of pyridine N-oxides and ethers was described by Wang group.[48] However, new versatile and practical methods for the functionalization of C(sp3)-H bond are still highly desired. In line with our interest in C-H bond activation and functionalization of heterocyclic compounds.[49~55] Herein, we describe the cross coupling reaction of quinoline N-oxide and C(sp3)-H bonds adjacent to oxygen of ether.

    At the beginning of our investigation, the reaction of quinoline 1-oxide with 1, 4-dioxane was chosen as a model reaction. The results are summarized in Table 1. It was found that the reaction could generate the corresponding product in 65% yield when tert-butyl hydroperoxide (TBHP, 5.0~6.0 mol/L in decane) was used as oxidant (Table 1, Entry 1). However, TBHP (70% in H2O) did not work in the model reaction (Table 1, Entry 2). Di-tert-butyl peroxide (DTBP) was the most effective oxidant for this reaction and the desired product could be isolated in 73% yield (Table 1, Entry 3). Other oxidants such as dicumyl peroxide (DCP), tert-butyl peroxybenzoate (TBPB), 2, 3- dicyano-5, 6-dichlorobenzoquinone (DDQ), K2S2O8, Na2- S2O8 and (NH4)2S2O8 were less effective (Table 1, Entries 4~9). When the equivalent of 1, 4-dioxane was doubled, the yield of the desired product was elevated to 89% (Table 1, Entry 10). We next turned our attention to investigate the effect of additives on the reaction. To our disappointment, all the additives we examined led to slower reactions (Table 1, Entries 11~14).

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Oxidant
    (3 equiv.)
    Additives
    (1 euqiv.)
    Yield/%
    1 TBHP - 65
    2b TBHP - Trace
    3 DTBP - 73
    4 DCP - Trace
    5 TBPB - 12
    6 DDQ - Trace
    7 K2S2O8 - Trace
    8 Na2S2O8 - Trace
    9 (NH4)2S2O8 - Trace
    10c DTBP - 89
    11c DTBP K2CO3 40
    12c DTBP t-BuOK 21
    13c DTBP Na2CO3 61
    14c DTBP DBU 62
    a Reaction conditions: 1a (0.2 mmol), 2a (1.0 mL), oxidant (3.0 equiv.), additives (1 equiv.), 100 ℃, 24 h. b TBHP (70% in H2O). c 2a (2.0 mL).

    Under the optimized reaction conditions, the scope of quinoline N-oxides and ethers was examined and the results were summarized in Table 2. To our delight, substituted quinoline N-oxides with a wide range of synthetically valuable functional groups underwent a coupling reaction to form the desired products in good to excellent yields (3a~3g). Either electron-donating or electron-withdrawing groups are well tolerated in this system. It should be noted that 6-fluoroquinoline 1-oxide also reacted smoothly with dioxane and provided the desired product with 81% yield (3e). The reaction of N-oxides with various ethers was also investigated (3h~3r). It can be seen that tetrahydro-2H-pyran, tetrahydrofuran and tetrahydrothiophene all underwent a coupling reaction smoothly with N-oxides. To our disappointment, chain ethers, such as tert-butyl methyl ether and ether were not compatible in this transformation. The same excellent results were also obtained when this method was performed at a gram scale using quinolin N-oxide as substrate (Scheme 1). This example clearly demonstrates the preparative utility of this newly developed method.

    Table 2

    Table 2.  Reaction scopea
    下载: 导出CSV

    Scheme 1

    Scheme 1.  A gram-scale preparation of 3a

    A control experiment was designed and performed to acquire some insight into mechanism of the coupling reaction. When 2 equiv. of TEMPO were added as the radical scavengers under standard conditions, the coupling reaction was suppressed, suggesting that a free-radical pathway was involved in the catalytic cycle (Scheme 2).

    Scheme 2

    Scheme 2.  Investigation of mechanism

    On the basis of above-mentioned experiment results and previous reports, [56~58] a proposed reaction mechanism was described in Scheme 3. Firstly, tert-butoxy radical (A) was generated via homolytic cleavage of dibutylperoxide (DTBP). Then the reaction of A with dioxane occurred to afford the radical B. Next the radical D was generated from the addition reaction of radical B with quinoline N-oxide. Finally, the intermediate D followed by deprotonation to afford the desired product E. It is worth noting that intermediate C which was generated from the reaction of TEMPO with radical B has been confirmed by HRMS.

    Scheme 3

    Scheme 3.  Proposed mechanism

    In conclusion, we have demonstrated an inexpensive method for the metal-free C-2 alkylation of N-oxides with ethers. A series of desired products were obtained in good to excellent yields. The developed transformation could also be performed in gram-scale which made this reaction have good potential in synthetic chemistry. Mechanism investigation revealed that a radical process was involved in this procedure. Further investigation of the reaction mechanism and its applications are underway in our laboratory.

    NMR spectra were recorded at 500 MHz for protons on a BRUKER AVANCE Ⅲ HD spectrometers. 1H NMR chemical shifts (δ) are relative to TMS (δ=0.0). Chemical shifts for 13C NMR spectra are reported from tetramethylsilane with the solvent as the internal standard. All major chemicals and solvents were obtained from commercial sources and used without further purification.

    A sealable reaction tube equipped with a magnetic stirrer bar was charged with quinoline N-oxide (0.2 mmol), 1, 4-dioxane (2 mL) and DTBP (3.0 equiv.). The reaction vessel was carried out 100 ℃. After completion, it was diluted with ethyl acetate, and washed with water. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to afford the corresponding product 3.

    2-(1, 4-Dioxan-2-yl)quinoline 1-oxide (3a)[59]: 1H NMR (500 MHz, CDCl3) δ: 8.74 (d, J=8.8 Hz, 1H), 7.86 (d, J=8.1 Hz, 1H), 7.82~7.74 (m, 2H), 7.67~7.60 (m, 2H), 5.56 (dd, J=9.5, 2.7 Hz, 1H), 4.60 (dd, J=11.1, 2.7 Hz, 1H), 4.11~3.97 (m, 2H), 3.93~3.84 (m, 1H), 3.77 (ddd, J=11.7, 10.3, 4.1 Hz, 1H), 3.33 (dd, J=11.1, 9.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 145.4, 141.3, 130.5, 129.5, 128.5, 128.1, 125.7, 119.4, 119.3, 73.0, 68.0, 67.3, 66.6.

    2-(1, 4-Dioxan-2-yl)-6-methylquinoline 1-oxide (3b)[59]: 1H NMR (500 MHz, CDCl3) δ: 8.61 (d, J=8.8 Hz, 1H), 7.68 (d, J=8.7 Hz, 1H), 7.63~7.54 (m, 3H), 5.55 (dd, J=9.5, 2.6 Hz, 1H), 4.58 (dd, J=11.1, 2.6 Hz, 1H), 4.03 (dt, J=10.8, 5.4 Hz, 2H), 3.87 (dd, J=11.3, 1.8 Hz, 1H), 3.77 (ddd, J=11.7, 10.4, 4.1 Hz, 1H), 3.34 (s, 1H), 2.55 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 144.6, 139.9, 138.7, 132.6, 129.7, 126.99, 125.2, 119.3, 119.2, 73.0, 68.2, 67.33, 7.57, 21.4.

    2-(1, 4-Dioxan-2-yl)-3-methylquinoline 1-oxide (3c): 1H NMR (500 MHz, CDCl3) δ: 8.67 (d, J=8.7 Hz, 1H), 7.78~7.64 (m, 2H), 7.58 (t, J=7.1 Hz, 1H), 7.50 (s, 1H), 6.11 (dd, J=10.1, 2.9 Hz, 1H), 4.16 (dd, J=11.2, 2.8 Hz, 1H), 4.03~3.92 (m, 2H), 3.89~3.72 (m, 3H), 2.71 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 144.7, 139.9, 131.9, 129.7, 128.9, 128.6, 127.2, 127.1, 119.9, 74.6, 67.3, 66.50, 66.0, 20.5. HRMS calcd for C14H16O3N [M+H]+ 246.11281, found 246.11247.

    2-(1, 4-Dioxan-2-yl)-6-methoxyquinoline 1-oxide (3d): 1H NMR (500 MHz, CDCl3) δ: 8.63 (d, J=9.5 Hz, 1H), 7.66 (d, J=8.8 Hz, 1H), 7.58 (d, J=8.7 Hz, 1H), 7.38 (dd, J=9.5, 2.6 Hz, 1H), 7.10 (d, J=2.6 Hz, 1H), 5.53 (dd, J=9.5, 2.6 Hz, 1H), 4.56 (dd, J=11.1, 2.6 Hz, 1H), 4.07~3.98 (m, 2H), 3.94 (s, 3H), 3.89~3.84 (m, 1H), 3.80~3.73 (m, 1H), 3.32 (dd, J=11.0, 9.6 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 159.3, 143.4, 137. 1, 130.9, 124.6, 122.6, 121.2, 119.8, 105.9, 72.9, 68.3, 67.3, 66.6, 55.7. HRMS calcd for C14H16O4N [M+H]+ 262.10739, found 262.10738.

    2-(1, 4-Dioxan-2-yl)-6-fluoroquinoline 1-oxide (3e): 1H NMR (500 MHz, CDCl3) δ: 8.15 (d, J=8.6 Hz, 1H), 8.07 (dd, J=13.2, 8.0 Hz, 3H), 7.98 (d, J=9.3 Hz, 1H), 7.51 (t, J=7.4 Hz, 1H), 7.45 (t, J=7.6 Hz, 2H), 7.34 (dd, J=9.3, 2.7 Hz, 1H), 7.01 (d, J=2.7 Hz, 1H), 3.86 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 162.8, 160.8, 145.0, 138.5, 130.7, 130.6, 124.9, 124.8, 122.6, 122.5, 120.6, 120.4, 120.2, 111.7, 111.5, 72.9, 67.9, 67.3, 66.6. HRMS calcd for C13H13O3NF [M+H]+ 250.08759, found 250.08740.

    6-Chloro-2-(1, 4-dioxan-2-yl)quinoline 1-oxide (3f): 1H NMR (500 MHz, CDCl3) δ: 8.68 (d, J=9.3 Hz, 1H), 7.85 (d, J=2.1 Hz, 1H), 7.73~7.64 (m, 3H), 5.51 (dd, J=9.5, 2.7 Hz, 1H), 4.56 (dd, J=11.1, 2.6 Hz, 1H), 4.08~3.98 (m, 2H), 3.92~3.84 (m, 1H), 3.77 (ddd, J=11.8, 9.5, 4.9 Hz, 1H), 3.31 (dd, J=11.1, 9.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 145.7, 139.9, 134.7, 131.1, 130.2, 126.8, 124.3, 121.5, 120.6, 72.9, 67.9, 67.3, 66.6. HRMS calcd for C13H13O3NCl [M+H]+ 266.05801, found 266.05785.

    2-(1, 4-Dioxan-2-yl)-6-(methoxycarbonyl)quinoline 1-oxide (3g): 1H NMR (500 MHz, CDCl3) δ: 8.77 (d, J=9.1 Hz, 1H), 8.61 (d, J=1.5 Hz, 1H), 8.34 (dd, J=9.1, 1.7 Hz, 1H), 7.86 (d, J=8.8 Hz, 1H), 7.71 (d, J=8.7 Hz, 1H), 5.54 (dd, J=9.4, 2.6 Hz, 1H), 4.59 (dd, J=11.1, 2.6 Hz, 1H), 4.06~4.02 (m, 2H), 4.01 (s, 3H), 3.90 (dd, J=11.4, 6.9 Hz, 1H), 3.77 (ddd, J=11.8, 9.4, 5.1 Hz, 1H), 3.33 (dd, J=11.0, 9.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ: 165.9, 147.4, 143.1, 130.9, 130.2, 129.9, 128.9, 126.2, 120.3, 120.1, 73.0, 67.8, 67.3, 66.6, 52.7. HRMS calcd for C15H16O5N [M+H]+ 290.10257, found 290.10230.

    6-Methyl-2-(tetrahydrofuran-2-yl)quinoline 1-oxide (3h): 1H NMR (500 MHz, CDCl3) δ: 8.62 (d, J=8.9 Hz, 1H), 7.61 (dt, J=19.7, 8.8 Hz, 4H), 5.59 (dd, J=7.7, 5.8 Hz, 1H), 4.17 (dd, J=14.3, 6.9 Hz, 1H), 4.10~3.97 (m, 1H), 2.88~2.76 (m, 1H), 2.54 (s, 3H), 2.13~2.00 (m, 1H), 1.99~1.85 (m, 2H); 13C NMR (126 MHz, CDCl3) δ: 150.1, 140.1, 138.2, 132.5, 129.5, 126.9, 125.2, 119.061, 118.5, 76.0, 69.3, 30.9, 25.8, 21.4. HRMS calcd for C14H16O2N [M+H]+ 230.11797, found 230.11756.

    6-Chloro-2-(tetrahydrofuran-2-yl)quinoline 1-oxide (3i): 1H NMR (500 MHz, CDCl3) δ: 8.69 (d, J=9.3 Hz, 1H), 7.85 (d, J=2.1 Hz, 1H), 7.75~7.59 (m, 3H), 5.55 (dd, J=7.8, 5.8 Hz, 1H), 4.21~4.12 (m, 1H), 4.04 (dd, J=14.9, 6.7 Hz, 1H), 2.87~2.74 (m, 1H), 2.16~2.01 (m, 1H), 1.99~1.85 (m, 2H); 13C NMR (126 MHz, CDCl3) δ: 151.2, 140.1, 134.3, 130.9, 130.1, 126.7, 124.3, 121.2, 119.9, 75.9, 69.4, 30.8, 25.8. HRMS calcd for C13H13O2NCl [M+H]+ 250.06287, found 250.06293.

    6-Methoxy-2-(tetrahydrofuran-2-yl)quinoline 1-oxide (3j)[59]: 1H NMR (500 MHz, CDCl3) δ: 8.64 (d, J=9.5 Hz, 1H), 7.64 (d, J=8.7 Hz, 1H), 7.55 (d, J=8.7 Hz, 1H), 7.37 (dd, J=9.5, 2.7 Hz, 1H), 7.11 (d, J=2.6 Hz, 1H), 5.57 (dd, J=7.7, 5.8 Hz, 1H), 4.17 (dd, J=13.7, 7.4 Hz, 1H), 4.10~3.99 (m, 1H), 3.94 (s, 3H), 2.85~2.76 (m, 1H), 2.14~2.00 (m, 1H), 1.99~1.86 (m, 2H); 13C NMR (126 MHz, CDCl3) δ: 159.0, 148.8, 137.3, 130.7, 124.6, 122.4, 120.9, 119.0, 105.9, 75.9, 69.3, 55.67, 30.9, 25.8.

    6-Fluoro-2-(tetrahydrofuran-2-yl)quinoline 1-oxide (3k): 1H NMR (500 MHz, CDCl3) δ: 8.76 (dd, J=9.2, 5.2 Hz, 1H), 7.66 (dd, J=28.5, 8.8 Hz, 2H), 7.56~7.43 (m, 2H), 5.56 (dd, J=7.5, 5.9 Hz, 1H), 4.17 (dd, J=13.7, 7.3 Hz, 1H), 4.10~3.98 (m, 1H), 2.90~2.74 (m, 1H), 2.14~2.01 (m, 1H), 1.99~1.85 (m, 2H); 13C NMR (126 MHz, CDCl3) δ: 162.6, 160.6, 150.4, 138.7, 130.4, 130.3, 124.7, 124.6, 122.4, 122.3, 120.1, 119.9, 119.8, 111.6, 111.4, 75.9, 69.3, 30.9, 25.8. HRMS calcd for C13H13O2NF [M+H]+ 234.09282, found 234.09248.

    2-(Tetrahydrofuran-2-yl)quinoline 1-oxide (3l): 1H NMR (500 MHz, CDCl3) δ: 8.75 (d, J=8.8 Hz, 1H), 7.87 (d, J=8.1 Hz, 1H), 7.81~7.74 (m, 2H), 7.63 (dd, J=8.0, 5.7 Hz, 2H), 5.61 (dd, J=7.7, 5.8 Hz, 1H), 4.18 (dd, J=13.9, 7.2 Hz, 1H), 4.13~4.00 (m, 1H), 2.89~2.77 (m, 1H), 2.15~2.00 (m, 1H), 1.94 (dq, J=11.7, 7.9 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ: 151.2, 141.5, 130.4, 129.3, 128.1, 128.0, 125.9, 119.3, 118.5, 76.1, 69.4, 30.9, 25.8. HRMS calcd for C13H14O2N [M+H]+ 216.10213, found 216.10191.

    6-(Methoxycarbonyl)-2-(tetrahydro-2H-pyran-2-yl)qui-noline 1-oxide (3m): 1H NMR (500 MHz, CDCl3) δ: 8.79 (d, J=9.1 Hz, 1H), 8.60 (d, J=1.7 Hz, 1H), 8.32 (dd, J=9.1, 1.8 Hz, 1H), 7.84 (d, J=8.8 Hz, 1H), 7.71 (d, J=8.7 Hz, 1H), 5.22 (dd, J=10.8, 1.9 Hz, 1H), 4.27~4.17 (m, 1H), 4.00 (s, 3H), 3.73 (td, J=11.8, 2.4 Hz, 1H), 2.50 (d, J=13.3 Hz, 1H), 1.97 (dd, J=10.5, 3.1 Hz, 1H), 1.90~1.70 (m, 2H), 1.70~1.59 (m, 2H); 13C NMR (126 MHz, CDCl3) δ: 165.9, 151.8, 143.1, 130.9, 129.8, 129.7, 128.7, 126.3, 120.2, 120.1, 74.6, 69.1, 52.6, 28.9, 26.0, 23.4. HRMS calcd for C16H18O4N [M+H]+ 288.12317, found 288.12303.

    2-(Tetrahydro-2H-pyran-2-yl)quinoline 1-oxide (3n): 1H NMR (500 MHz, CDCl3) δ: 8.76 (d, J=8.8 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 7.76 (dd, J=12.2, 4.9 Hz, 2H), 7.67~7.59 (m, 2H), 5.25 (dd, J=10.8, 1.9 Hz, 1H), 4.25~4.16 (m, 1H), 3.74 (td, J=11.8, 2.4 Hz, 1H), 2.50 (d, J=13.2 Hz, 1H), 1.97 (dd, J=10.4, 3.1 Hz, 1H), 1.87~1.70 (m, 3H), 1.68~1.63 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 149.9, 141.4, 130.3, 129.3, 128.1, 128.0, 125.9, 119.6, 119.1, 74.6, 69.1, 29.1, 26.1, 23.4. HRMS calcd for C14H16O2N [M+H]+ 230.11784, found 230.11756.

    6-Chloro-2-(tetrahydro-2H-pyran-2-yl)quinoline 1-oxide (3o): 1H NMR (500 MHz, CDCl3) δ: 8.69 (d, J=9.3 Hz, 1H), 7.83 (d, J=2.2 Hz, 1H), 7.67 (q, J=2.1 Hz, 3H), 5.20 (dd, J=10.8, 2.0 Hz, 1H), 4.27~4.17 (m, 1H), 3.72 (td,

    J=11.8, 2.4 Hz, 1H), 2.47 (d, J=13.2 Hz, 1H), 2.00~1.93 (m, 1H), 1.89~1.69 (m, 3H), 1.68~1.62 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 150.2, 139.9, 134.3, 130.9, 129.9, 126.7, 124.7, 121.6, 120.4, 74.4, 69.1, 28.9, 26.0, 23.3. HRMS calcd for C14H15O2NCl [M+H]+ 264.07861, found 264.07858.

    2-(Tetrahydrothiophen-2-yl)quinoline 1-oxide (3p): 1H NMR (500 MHz, CDCl3) δ: 8.77 (d, J=8.8 Hz, 1H), 7.84 (d, J=8.0 Hz, 1H), 7.81~7.68 (m, 3H), 7.61 (ddd, J=8.1, 7.0, 1.1 Hz, 1H), 5.51~5.39 (m, 1H), 3.15~2.99 (m, 2H), 2.64~2.49 (m, 1H), 2.23~2.08 (m, 3H); 13C NMR (126 MHz, CDCl3) δ: 150.1, 141.7, 130.4, 129.1, 128.2, 127.9, 125.1, 120.1, 119.9, 46.0, 35.2, 32.8, 30.7. HRMS calcd for C13H14ONS [M+H]+ 232.07901, found 232.07906.

    6-Chloro-2-(tetrahydrothiophen-2-yl)quinoline 1-oxide (3q): 1H NMR (500 MHz, CDCl3) δ: 8.71 (d, J=9.3 Hz, 1H), 7.82 (d, J=2.2 Hz, 1H), 7.76 (d, J=8.8 Hz, 1H), 7.67 (dd, J=9.3, 2.2 Hz, 1H), 7.61 (d, J=8.8 Hz, 1H), 5.49~5.28 (m, 1H), 3.12~3.00 (m, 2H), 2.59~2.45 (m, 1H), 2.24~2.10 (m, 3H); 13C NMR (126 MHz, CDCl3) δ: 150.4, 140.2, 134.4, 131.1, 129.8, 126.6, 123.9, 121.8, 121.4, 45.9, 35.2, 32.8, 30.7. HRMS calcd for C13H13ONClS [M+H]+ 266.04016, found 266.04009.

    6-(Methoxycarbonyl)-2-(tetrahydrothiophen-2-yl)quino-line 1-oxide (3r): 1H NMR (500 MHz, CDCl3) δ: 8.81 (d, J=9.1 Hz, 1H), 8.59 (d, J=1.6 Hz, 1H), 8.32 (dd, J=9.1, 1.8 Hz, 1H), 7.81 (s, 2H), 5.42 (dd, J=6.8, 5.6 Hz, 1H), 4.00 (s, 3H), 3.08 (ddd, J=16.3, 7.9, 4.0 Hz, 2H), 2.57 (ddd, J=12.6, 7.3, 4.2 Hz, 1H), 2.26~2.11 (m, 3H); 13C NMR (126 MHz, CDCl3) δ: 165.9, 152.1, 143.3, 130.9, 129.9, 129.8, 128.5, 125.8, 121.0, 120.5, 52.6, 46.0, 35.1, 32.9, 30.7. HRMS calcd for C15H16O3NS [M+H]+ 290.08453, found 290.08454.

    Supporting Information 1H NMR and 13C NMR spectra of compounds 3a~3r. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      Mamedov, V. A.; Zhukova, N. A. Prog. Heterocycl. Chem. 2012, 24, 55. doi: 10.1016/B978-0-08-096807-0.00002-6

    2. [2]

      Xie, L. Y.; Peng, S.; Liu, F.; Yi, J. Y.; Wang, M.; Tang, Z.; Xu, X.; He, W. M. Adv. Synth. Catal. 2018, 360, 4259. doi: 10.1002/adsc.201800918

    3. [3]

      Shi, L.; Hu, W.; Wu, J.; Zhou, H.; Zhou, H.; Li, X. Mini-Rev. Med. Chem. 2018, 18, 392. doi: 10.2174/1389557517666171101111134

    4. [4]

      Liang, Q.; Zhang, Y.; Zeng, M.; Guan, L.; Xiao, Y.; Xiao, F. Toxicol Res. 2018, 7, 521. doi: 10.1039/C8TX00029H

    5. [5]

      Tao, S.; Li, L.; Yu, J. S.; Jiang, Y. D.; Zhou, Y. C.; Lee, C. S.; Lee, S. T.; Zhang, X. H.; Kwon, O. Chem. Mater. 2009, 21, 1284. doi: 10.1021/cm803087c

    6. [6]

      (a) Yu, Q.; Yang, Y.; Wan, J.; Liu, Y. J. Org. Chem. 2018, 83, 11385.
      (b) Cao, Z.; Zhu, Q.; Lin, Y. W.; He, W. M. Chin. Chem. Lett. 2019, 30, 2132.

    7. [7]

      Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y.; Yu, X.; Gui, Q. Org. Biomol. Chem. 2019, 17, 2715. doi: 10.1039/C8OB02992J

    8. [8]

      (a) Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.
      (b) Yang, D.; Sun, P.; Wei, W.; Liu, F.; Zhang, H.; Wang, H. Chem.-Eur. J. 2018, 24, 4423.

    9. [9]

      Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Org. Chem. Front. 2018, 5, 2974.

    10. [10]

      (a) Watson, B. T.; Christiansen, G. E. Tetrahedron Lett. 1998, 39, 9839.
      (b) Xiao, B.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.
      (c) Gu, Y.; Duan, X.; Yang, L.; Guo, L. Org. Lett. 2017, 19, 5908.
      (d) Zhang, W.; Dai, J.; Xu, J.; Xu, H. J. Org. Chem. 2017, 82, 2059.

    11. [11]

      (a) Wu, J.; Xiang, S.; Zeng, J.; Leow, M.; Liu, X. W. Org. Lett. 2015, 17, 222.
      (b) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese). (余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)

    12. [12]

      Guan, M.; Pang, Y.; Zhang, J.; Zhao, Y. Chem. Commun. 2016, 52, 7043. doi: 10.1039/C6CC02865A

    13. [13]

      Ikbal, M.; Banerjee, R.; Atta, S.; Jana, A.; Dhara, D.; Anoop, A.; Singh, N. D. P. Chem.-Eur. J. 2012, 18, 11968. doi: 10.1002/chem.201104065

    14. [14]

      Yan, G. B.; Borah, A. J.; Yang, M. H. Adv. Synth. Catal. 2014, 356, 2375. doi: 10.1002/adsc.201400203

    15. [15]

      Wang, Y. L.; Zhang, L. M. Synthesis 2015, 47, 289. doi: 10.1055/s-0034-1379884

    16. [16]

      (a) Xie, L. Y.; Li, Y. J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K. J.; Cao, Z.; He, W. M. Green Chem. 2017, 19, 5642.
      (b) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.

    17. [17]

      (a) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 8325.
      (b) Xie, L. Y.; Peng, S.; Tan, J. X.; Sun, R. X.; Yu, X.; Dai, N. N.; Tang, Z. L.; Xu, X.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 16976.

    18. [18]

      Xie, L. Y.; Peng, S.; Liu, F.; Liu, Y. F.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 7193. doi: 10.1021/acssuschemeng.9b00200

    19. [19]

      (a) Xie, L. Y.; Peng, S.; Liu, F.; Chen, G. R.; Xia, W.; Yu, X. Y.; Li, W. F.; Cao, Z.; He, W. M. Org. Chem. Front. 2018, 5, 2604.
      (b) Xie, L. Y.; Peng, S.; Fan, T. G.; Liu, Y. F.; Sun, M.; Jiang, L. L.; Wang, X. X.; Cao, Z.; He, W. M. Sci. China Chem. 2019, 62, 460.
      (c) Xie, L. Y.; Duan, Y.; Lu, L. H.; Li, Y. J.; Peng, S.; Wu, C.; Liu, K. J.; Wang, Z.; He, W. M. ACS Sustainable Chem. Eng. 2017, 5, 10407.

    20. [20]

      Du, S. D.; Pi, C.; Wan, T.; Wu, Y. J.; Cui, X. L. Adv. Synth. Catal. 2019, 361, 1766. doi: 10.1002/adsc.201801433

    21. [21]

      Chen, X. P.; Cui, X. L.; Yang, F. F.; Wu, Y. J. Org. Lett. 2015, 17, 1445.

    22. [22]

      Zhang, Q. W.; Hartwig, J. F. Chem. Commun. 2018, 54, 10124. doi: 10.1039/C8CC05084H

    23. [23]

      Chen, X. P.; Yang, F. F.; Cui, X. L.; Wu, Y. J. Adv. Synth. Catal. 2017, 359, 3922. doi: 10.1002/adsc.201700931

    24. [24]

      Sena, C.; Ghosh, S. C. Adv. Synth. Catal. 2018, 360, 905.

    25. [25]

      Wang, H.; Cui, X. L.; Pei, Y.; Zhang, Q. Q.; Bai, J.; Wei, D. H.; Wu, Y. J. Chem. Commun. 2014, 50, 14409. doi: 10.1039/C4CC07060G

    26. [26]

      Su, Y.; Zhou, X. J.; He, C. L.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981. doi: 10.1021/acs.joc.6b00475

    27. [27]

      Xie, L. Y.; Qu, J.; Peng, S.; Liu, K. J.; Wang, Z.; Ding, M. H.; Wang, Y.; Cao, Z.; He, W. M. Green Chem. 2018, 20, 760. doi: 10.1039/C7GC03106H

    28. [28]

      Zhang, Y.; Zhang, S. W.; Xu, G. X.; Li, M.; Tang, C. L.; Fan, W. Z. Org. Biomol. Chem. 2019, 17, 309. doi: 10.1039/C8OB02844C

    29. [29]

      Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134. doi: 10.1021/acs.orglett.5b01456

    30. [30]

      Han, Y. P.; Li, X. S.; Zhu, X. Y.; Li, M.; Zhou, L.; Song, X. R.; Liang, Y. M. J. Org. Chem. 2017, 82, 1697. doi: 10.1021/acs.joc.6b02882

    31. [31]

      (a) Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.
      (b) Li, L. X.; Dong, D. Q.; Hao, S. H; Wang, Z. L. Tetrahedron Lett. 2018, 59, 1517.
      (c) Liu, K. J.; Duan, Z. H.; Zeng, X. L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 10293.
      (d) Xie, L. Y.; Peng, S.; Jiang, L. L.; Peng, X.; Xia, W.; Yu, X.; Wang, X. X.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 167.

    32. [32]

      (a) Li, H.; Lia, B. J.; Shi, Z. J. Catal. Sci. Technol. 2011, 1, 191.
      (b) Zhu, Z.; Xiao, L.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2019, 39, 2345(in Chinese). (祝志强, 肖利金, 谢宗波, 乐长高, 有机化学, 2019, 39, 2345.)

    33. [33]

      Hu, H.; Chen, X. L.; Sun, K.; Wang, J. C.; Liu, Y.; Liu, H.; Yu, B.; Sun, Y. Q.; Qu, L. B.; Zhao, Y. F. Org. Lett. 2018, 20, 6157. doi: 10.1021/acs.orglett.8b02627

    34. [34]

      Yang, G. P.; Wu, X.; Yu, B.; Hu, C. W. ACS Sustainable Chem. Eng. 2019, 7, 3727. doi: 10.1021/acssuschemeng.8b06445

    35. [35]

      Dong, D. Q.; Gao, X.; Li, L. X.; Hao, S. H.; Wang, Z. L. Res. Chem. Intermed. 2018, 44, 7557. doi: 10.1007/s11164-018-3573-z

    36. [36]

      Anas, S.; Cordib, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483. doi: 10.1039/c1cc14292e

    37. [37]

      Yang, G. P.; Wu, X.; Yu, B.; Hu, C. W. ACS Sustainable Chem. Eng. 2019, 7, 3727

    38. [38]

      Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. doi: 10.1039/c1cs15082k

    39. [39]

      (a) Dong, D. Q.; Hao, S. H.; Wang, Z. L. Mini-Rev. Org. Chem. 2017, 14, 130.
      (b) Yang, W.-C.; Feng, J.-G.; Wu, L.; Zhang, Y.-Q. Adv. Synth. Catal. 2019, 361, 1700.

    40. [40]

      Kong, S. S.; Zhang, L. Q.; Dai, X. L.; Tao, L. Z.; Xie, C. S.; Shi, L.; Wang, M. Adv. Synth. Catal. 2015, 357, 2453. doi: 10.1002/adsc.201500096

    41. [41]

      Zhang, Y. H.; Li, C. J. Angew. Chem., Int. Ed. 2006, 45, 1949. doi: 10.1002/anie.200503255

    42. [42]

      Song, Y.; He, X.; Yu, B.; Li, H. R.; He, L. N. Chin. Chem. Lett. 2020, 31, 667. doi: 10.1016/j.cclet.2019.07.053

    43. [43]

      Muramatsu, W.; Nakano, K. Org. Lett. 2014, 16, 2042. doi: 10.1021/ol5006399

    44. [44]

      Wu, Z. Y.; Pi, C.; Cui, X. L.; Bai, J.; Wu, Y. J. Adv. Synth. Catal. 2013, 355, 1971. doi: 10.1002/adsc.201300111

    45. [45]

      Li, Z. P.; Yu, R.; Li, H. J. Angew. Chem., Int. Ed. 2008, 47, 7497.

    46. [46]

      Chen, L.; Shi, E.; Liu, Z. J.; Chen, S. L.; Wei, W.; Li, H.; Xu, K.; Wan, X. B. Chem.-Eur. J. 2011, 17, 4085. doi: 10.1002/chem.201100192

    47. [47]

      Kumar, G. S.; Pieber, B.; Reddy, K. R.; Kappe, C. O. Chem.-Eur. J. 2012, 18, 6124. doi: 10.1002/chem.201200815

    48. [48]

      Sun, W.; Xie, Z. G.; Liu, J.; Wang, L. Org. Biomol. Chem. 2015, 13, 4596. doi: 10.1039/C5OB00237K

    49. [49]

      (a) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313.
      (b) Dong, D. Q.; Chen, W. J.; Chen, D. M.; Li, L. X.; Li, G. H.; Wang, Z. L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190(in Chinese). (董道青, 陈文静, 陈德茂, 李丽霞, 李光辉, 王祖利, 邓企, 龙姝, 有机化学, 2019, 39, 3190.)
      (c) Yan, S.; Dong, D.-Q.; Xie, C.; Wang, W.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 2560(in Chinese). (颜世强, 董道青, 解春文, 王文笙, 王祖利, 有机化学, 2019, 39, 2560.)
      (d) Dong, D.-Q.; Gao, X.; Li, L.-X.; Hao, S.-H.; Wang, Z.-L. Res. Chem. Intermed. 2018, 44, 7557.

    50. [50]

      Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480. doi: 10.1002/slct.201900060

    51. [51]

      Dong, D.-Q.; Zhang, H.; Wang, Z.-L. RSC Adv. 2017, 7, 3780. doi: 10.1039/C6RA26387A

    52. [52]

      Hao, S.-H.; Li, L.-X.; Dong, D.-Q.; Wang, Z.-L. Chin. J. Catal. 2017, 38, 1664. doi: 10.1016/S1872-2067(17)62901-2

    53. [53]

      Hao, S. H.; Li, L. X.; Dong, D. Q.; Wang, Z. L.; Yu, X. Y. Tetrahedron Lett. 2018, 59, 4073. doi: 10.1016/j.tetlet.2018.10.001

    54. [54]

      Dong, D. Q.; Hao, S. H.; Zhang, H.; Wang, Z. L. Chin. Chem. Lett. 2017, 28, 1597. doi: 10.1016/j.cclet.2017.03.008

    55. [55]

      (a) Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.
      (b) Han, Q. Q.; Li, G. H.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Yu, X.-Y.; Xu, X.-M. Tetrahedron Lett. 2020, 151704.

    56. [56]

      (a) Chen, W.; Zhang, Y.; Li, P.; Wang, L. Org. Chem. Front. 2018, 5, 855.
      (b) Xie, L. Y.; Fang, T. G.; Tan, J. X.; Zhang, B.; Cao, Z.; Yang, L. H.; He, W. M. Green Chem. 2019, 21, 3858.
      (c) Peng, S.; Song, Y.; He, J.; Tang, S.; Tan, J.; Cao, Z.; Lin, Y.; He, W. Chin. Chem. Lett. 2019, 30, 2287.

    57. [57]

      Yang, L.; Lu, W.; Zhou, W.; Zhang, F. Green Chem. 2016, 18, 2941. doi: 10.1039/C6GC00362A

    58. [58]

      Huang, R.; Xie, C. S.; Huang, L.; Liu, J. H. Tetrahedron 2013, 69, 577. doi: 10.1016/j.tet.2012.11.020

    59. [59]

      Wu, Z. Y.; Pi, C.; Cui, X. L.; Bai, J.; Wu, Y. G. Adv. Synth. Catal. 2013, 355, 1971. doi: 10.1002/adsc.201300111

  • Scheme 1  A gram-scale preparation of 3a

    Scheme 2  Investigation of mechanism

    Scheme 3  Proposed mechanism

    Table 1.  Optimization of the reaction conditionsa

    Entry Oxidant
    (3 equiv.)
    Additives
    (1 euqiv.)
    Yield/%
    1 TBHP - 65
    2b TBHP - Trace
    3 DTBP - 73
    4 DCP - Trace
    5 TBPB - 12
    6 DDQ - Trace
    7 K2S2O8 - Trace
    8 Na2S2O8 - Trace
    9 (NH4)2S2O8 - Trace
    10c DTBP - 89
    11c DTBP K2CO3 40
    12c DTBP t-BuOK 21
    13c DTBP Na2CO3 61
    14c DTBP DBU 62
    a Reaction conditions: 1a (0.2 mmol), 2a (1.0 mL), oxidant (3.0 equiv.), additives (1 equiv.), 100 ℃, 24 h. b TBHP (70% in H2O). c 2a (2.0 mL).
    下载: 导出CSV

    Table 2.  Reaction scopea

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  778
  • HTML全文浏览量:  77
文章相关
  • 发布日期:  2020-06-25
  • 收稿日期:  2020-02-01
  • 修回日期:  2020-03-01
  • 网络出版日期:  2020-03-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章