Citation: Zhai Lianjie, Zhang Junlin, Zhang Jiarong, Wu Minjie, Bi Fuqiang, Wang Bozhou. Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1484-1501. doi: 10.6023/cjoc202001018 shu

Progress in Synthesis and Properties of High Energy Density Compounds Regulated by N—F Bond

  • Corresponding author: Bi Fuqiang, bifuqiang@gmail.com Wang Bozhou, wbz600@163.com
  • Received Date: 12 January 2020
    Revised Date: 27 February 2020
    Available Online: 6 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21805224)the National Natural Science Foundation of China 21805224

Figures(37)

  • Compared with the traditional N-O bond-based energetic materials, N-F bond-regulated energetic materials have received worldwide research interest due to their special features of high density, high specific impulse, and high heat release upon combustion with metals. The N-F bond-regulated energetic materials are classified as N-F azoles, (difluoroamino)dinitromethyl-substituted derivatives, gem-bis(difluoramino)-substituted derivatives, and difluoroamino polymers according to their structural characteristics. The recent developments of N-F bond and difluoramino (NF2) energetic derivatives are reviewed. The construction methodologies of N-F bond and difluoroamino groups as well as the synthetic routes to their energetic derivatives are emphatically reviewed. Moreover, the physicochemical and energetic properties of some typical compounds are briefly introduced. It will be the inevitable trend to develop effective, safe, and simple N-F bond and difluoraminiation preparation method, and novel high-performing N-F bond-based azoles and cyclic difluoramino-nitramines with moderate sensitivities and stable structures.
  • 加载中
    1. [1]

      Gao, H.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.  doi: 10.1021/cr200039c

    2. [2]

      Klapötke, T. M. Chemistry of High-energy Materials, 2nd ed., Walter de Gruyter, Berlin, 2012.

    3. [3]

      Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151, 289.  doi: 10.1016/j.jhazmat.2007.10.039

    4. [4]

      Xue, Q.; Bi, F. Q.; Zhang, J. R.; Zhang, J. L.; Wang, B. Z.; Zhang, S. R. Chin. J. Org. Chem. 2019, 39, 1244 (in Chinese).
       

    5. [5]

      Wang, Y.; Liu, Y. J.; Song, S. W.; Yang, Z. J.; Qi, X. J.; Wang, K. C.; Liu, Y.; Zhang, Q. H.; Tian, Y. Nat. Commun. 2018, 9, 2444.  doi: 10.1038/s41467-018-04897-z

    6. [6]

      Tang, Y. X.; Kumar, D.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 13684.  doi: 10.1021/jacs.7b08789

    7. [7]

      Zhai, L. J.; Bi, F. Q.; Huo, H.; Luo, Y. F.; Li, X. Z.; Chen, S. P.; Wang, B. Z. Front. Chem. 2019, 7, 559.  doi: 10.3389/fchem.2019.00559

    8. [8]

      Zhang, J. R.; Bi, F. Q.; Lian, P.; Zhang, J. L.; Wang, B. Z. Chin. J. Org. Chem. 2017, 37, 2736 (in Chinese).
       

    9. [9]

      Li, Y. L.; Xue, M.; Wang J. L.; Cao, D. L.; Ma, Z. L. Chin. J. Org. Chem. 2016, 36, 1528 (in Chinese).
       

    10. [10]

      Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Energ. Mater. 2019, 27, 708 (in Chinese).  doi: 10.11943/CJEM2018302

    11. [11]

      Zhou, J.; Zhang, J. L.; Ding, L.; Bi, F. Q.; Wang, B. Z. Chin. J. Explos. Propellants 2019, 42, 608 (in Chinese).

    12. [12]

      Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Wang, N. X.; Zhang, J. L.; Wang, B. Z. Sci. Rep. 2019, 9, 4321.  doi: 10.1038/s41598-019-39723-z

    13. [13]

      Xu, Y. G.; Shen, C.; Lin, Q. H.; Wang, P. C.; Jiang, C.; Lu, M. J. Mater. Chem. A 2016, 4, 17791.  doi: 10.1039/C6TA08831G

    14. [14]

      Barton, L. M.; Edwards, J. T.; Johnson, E. C.; Bukowski, E. J.; Sausa, R. C.; Byrd, E. F. C.; Orlicki, J. A.; Sabatini, J. J.; Baran, P. S. J. Am. Chem. Soc. 2019, 141, 12531.  doi: 10.1021/jacs.9b06961

    15. [15]

      Zhai, L. J.; Bi, F. Q.; Luo, Y. F.; Sun, L.; Huo, H.; Zhang, J. C.; Zhang, J. L.; Wang, B. Z.; Chen, S. P. Chem. Eng. J. 2020, 391, 123573.  doi: 10.1016/j.cej.2019.123573

    16. [16]

      Vishnevskiy, Y. V.; Tikhonov, D.; Schwabedissen, J.; Stammler, H-G.; Moll, R.; Krumm, B.; Klapötke, T. M.; Mitzel, N. W. Angew. Chem., Int. Ed. 2017, 56, 9619.

    17. [17]

      Yu, Q.; Yin, P.; Zhang, J. H.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816.  doi: 10.1021/jacs.7b05158

    18. [18]

      Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain. J.; Punzalan, E.; Gilardi, R. J. Am. Chem. Soc. 1997, 119, 9591.  doi: 10.1021/ja970552q

    19. [19]

      Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem., Int. Ed. 2000, 39, 401.  doi: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P

    20. [20]

      Gong, X. B.; Sun, C. H.; Pang, S. P.; Zhang, J.; Li, Y. C.; Zhao, X. Q. Chin. J. Org. Chem. 2012, 32, 486 (in Chinese).
       

    21. [21]

      Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana S. N.; Singh, H. Combust., Explos. Shock Waves 2005, 41, 121.  doi: 10.1007/s10573-005-0014-2

    22. [22]

      Ammon, H. L. Struct. Chem. 2001, 12, 205.  doi: 10.1023/A:1016607906625

    23. [23]

      Feng, Z. G. Prog. Chem. 2000, 12, 171 (in Chinese).  doi: 10.3321/j.issn:1005-281X.2000.02.006

    24. [24]

      Liu, H.; Zhang, Y. J.; Zhang, L. Y.; Zheng, W. F.; Pan, R. M. Chin. J. Explos. Propellants 2019, 42, 363 (in Chinese).

    25. [25]

      Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 387.  doi: 10.1016/S0010-2180(97)00123-5

    26. [26]

    27. [27]

      Valluri, S. K.; Schoenitz, M.; Dreizin, E. Def. Technol. 2019, 15, 1.

    28. [28]

      Li, S. W.; Zhao, F. Q.; Yuan, C.; Luo, Y.; Gao, Y. J. Solid Rocket Technol. 2002, 25, 36 (in Chinese).  doi: 10.3969/j.issn.1006-2793.2002.02.009

    29. [29]

      Chapman, R. D. Struct. Bonding 2007, 125, 123.

    30. [30]

      Li, H.; Qin, Y. J.; Li, J. H.; Pan, R. M.; Wang, W. J. Chem. Bull. 2012, 75, 1076 (in Chinese).

    31. [31]

      Klapötke, T. M. J. Fluorine Chem. 2006, 127, 679.  doi: 10.1016/j.jfluchem.2006.03.001

    32. [32]

      Chen, J. F.; Yu, Y.; Li, Y. C.; Pang, S. P. J. Fluorine Chem. 2018, 205, 35.  doi: 10.1016/j.jfluchem.2017.11.008

    33. [33]

      Ruff, O.; Giese, M. Eur. J. Inorg. Chem. 1936, 69, 598.

    34. [34]

      Davenas, A. J. Propul. Power 2003, 19, 1108.

    35. [35]

      Petry, R. C.; Freeman, J. P. J. Org. Chem. 1967, 32, 4034  doi: 10.1021/jo01287a068

    36. [36]

      Coon, C. L.; Ross, D. L. US 3732288, 1973.

    37. [37]

      Reed, S. F.; Shoults, R. D. J. Org. Chem. 1972, 37, 3326.  doi: 10.1021/jo00986a027

    38. [38]

      Coon, C. L.; Ross, D. L. US 3714254, 1973.

    39. [39]

      Wiener, C.; Tyler, W. E. US 4128583, 1978.

    40. [40]

      Zheng, Y. Y.; Zhou, J. Z.; Zhou, D. L.; Zhang, M. N. Acta Armamentarii 1988, 1, 59 (in Chinese).

    41. [41]

      Wang, W. J.; Li, H.; Pan, R. M.; Zhu, W. H. Chin. J. Org. Chem. 2019, 39, 170 (in Chinese).
       

    42. [42]

      Li, H.; Zhang, L. Y.; Pan, R. M.; Wang, W. J. Chin. J. Explos. Propellants. 2012, 35, 37 (in Chinese).

    43. [43]

      Zhang, M. Q.; Liu, H. Y.; Gao, B. Z.; Zhang, L.; Kang, L.; Zhang, K. R. Chin. J. Energ. Mater. 2012, 20, 314 (in Chinese).  doi: 10.3969/j.issn.1006-9941.2012.03.011

    44. [44]

      Laali, K. K.; Tanaka, M.; Forohar, F.; Cheng, M.; Fetzer, J. C. J. Fluorine Chem. 1998, 91, 185.  doi: 10.1016/S0022-1139(98)00224-3

    45. [45]

      Dalinger, I. L.; Shkineva, T. K.; Vatsadze, I. A.; Popova, G. P.; Shevelev, S. A. Mendeleev Commun. 2011, 21, 48.  doi: 10.1016/j.mencom.2011.01.020

    46. [46]

      Grakauskas, V.; Baum, K. J. Org. Chem. 1969, 34, 2840.  doi: 10.1021/jo01262a010

    47. [47]

      Chapman, R. D.; Davis, M. C.; Gilardi, R. Synth. Commun. 2003, 35, 4173.

    48. [48]

      Sharts, C. M. J. Org. Chem. 1968, 33, 1008.  doi: 10.1021/jo01267a014

    49. [49]

      Mcpake, C. B.; Murray, C. B.; Sandford, G. Aust. J. Chem. 2013, 66, 145.  doi: 10.1071/CH12381

    50. [50]

      Archibald, T. G.; Manser, G. E. US 5789617, 1998.

    51. [51]

      Emelexus, H. J.; Shreeve, J. M.; Verma, R. D. Adv. Inorg. Chem. 1989, 33, 139.  doi: 10.1016/S0898-8838(08)60195-6

    52. [52]

      Klapdor, M. F.; Willner, H.; Poll, W.; Mootz, D. Angew. Chem. 1996, 108, 320.  doi: 10.1002/ange.19961080309

    53. [53]

      Freeman, J. P.; Kennedy, A.; Colburn, C. B. J. Am. Chem. Soc. 1960, 82, 5304.  doi: 10.1021/ja01505a009

    54. [54]

      Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.

    55. [55]

      Graham, W. H.; Parker, C. O. J. Org. Chem. 1963, 28, 850.

    56. [56]

      Grakauskas, V.; Baum, K. J. Am. Chem. Soc. 1970, 92, 2096.  doi: 10.1021/ja00710a050

    57. [57]

      Banks, R. E.; Haszeldine, R. N.; Lalu, J. P. J. Chem. Soc., C 1966, 1514.  doi: 10.1039/j39660001514

    58. [58]

      Baum, K. J. Am. Chem. Soc. 1968, 90, 7083.  doi: 10.1021/ja01027a035

    59. [59]

      Fokin, A. V.; Kosyrev, Y. M.; Shevchenko, V. I. Russ. Chem. Bull. 1983, 31, 1626.

    60. [60]

      Graham, W. H.; Freeman, J. P. J. Am. Chem. Soc. 1967, 89, 716.  doi: 10.1021/ja00979a058

    61. [61]

      Keith, J. N.; Douthart, R. J.; Sumida, W. K.; Solomon, I. J. Advanced Propellant Chemistry 1966, 141.

    62. [62]

      Haiges, R.; Wagner, R.; Boatz, J. A.; Yousufuddin, M.; Etzkorn, M.; Surya Prakash, G. K.; Christe, K. O.; Chapman, R. D.; Welker, M. F.; Kreutzberger. C. B. Angew. Chem., Int. Ed. 2006, 45, 5179.  doi: 10.1002/anie.200601020

    63. [63]

      Coon, C. L.; Hill, M. E.; Ross, D. L. US 3759998, 1973.

    64. [64]

      Baum, K.; Grakauskas, V. US 4075246, 1978.

    65. [65]

      Flanagan, G. E.; Frankel, M. B.; Witucki, E. F. US 4141910, 1979.

    66. [66]

      Surya Prakash, G. K.; Etzkorn, M.; Olah, G. A.; Christe, K. O.; Schneidera, S.; Vij, A. Chem. Commun. 2002, 1712.

    67. [67]

      Lustig, M.; Cady, G. H. Inorg. Chem. 1963, 2, 388.  doi: 10.1021/ic50006a036

    68. [68]

      Fokin, A. K.; Studnev, Y. N.; Rapkin, A. L.; Kuznetsova, L. D. Russ. Chem. Bull. 1996, 45, 2547.  doi: 10.1007/BF01431113

    69. [69]

      Dalinger, I. L.; Shakhnes, A. K.; Monogarov, K. A.; Suponitsky, K. Y.; Sheremetev, A. B. Mendeleev Commun. 2015, 25, 429.  doi: 10.1016/j.mencom.2015.11.010

    70. [70]

      Semenov, V. V.; Shevelev, S. A.; Bruskin, A. B.; Shakhnes, A. K.; Kuz'min, V. S. Chem. Heterocycl. Compd. 2017, 53, 728.

    71. [71]

      Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Yu.; Muravyev, N. V.; Sheremetev, A. B. Chem. Asian J. 2018, 13, 1165.

    72. [72]

      Colburn, C. B.; Kennedy, A. J. Am. Chem. Soc. 1958, 80, 5004.

    73. [73]

      Baumgardner, C. L.; Lawton, E. L. Acc. Chem. Res. 1974, 7, 14.  doi: 10.1021/ar50073a003

    74. [74]

      Reed Jr, S. F. J. Org. Chem. 1968, 33, 1861.  doi: 10.1021/jo01269a034

    75. [75]

      Petry, R. C.; Parker, C. O.; Johnson, F. A.; Stevens, T. E.; Freeman, J. P. J. Org. Chem. 1967, 32, 1534.  doi: 10.1021/jo01280a052

    76. [76]

      Petry, R. C.; Freeman, J. P. J. Am. Chem. Soc. 1961, 83, 3912.

    77. [77]

      Gakh, A. A.; Romaniko, S. V.; Ugrak, B. I.; Fainzilberg, A. A. Tetrahedron 1991, 47, 7447.  doi: 10.1016/S0040-4020(01)89746-5

    78. [78]

      Majumder, U.; Armantrout, J. R.; Williams, R. V.; Shreeve, J. M. J. Org. Chem. 2002, 67, 8435.  doi: 10.1021/jo026201y

    79. [79]

      Belter, R. K. J. Fluorine Chem. 2012, 132, 961.

    80. [80]

      Dalinger, I. L.; Vinogradov, V. M.; Shevelev, S. A.; Kuz'min, V. S.; Arnautova, E. A.; Pivina, T. S. Propellants, Explos., Pyrotech. 1998, 23, 212.  doi: 10.1002/(SICI)1521-4087(199808)23:4<212::AID-PREP212>3.0.CO;2-Y

    81. [81]

      Fokin, A. K.; Studnev, Y. N.; Stolyarov, V. P.; Mel'nikov, A. A. Russ. Chem. Bull. 2000, 49, 949.  doi: 10.1007/BF02494724

    82. [82]

      Marsden, H. M.; Shreeve, J. M. Inorg. Chem. 1987, 26, 169.  doi: 10.1021/ic00248a033

    83. [83]

      John, E. O.; Shreeve, J. M. Inorg. Chem. 1988, 27, 3100.  doi: 10.1021/ic00291a011

    84. [84]

      John, E. O.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine Chem. 1990, 47, 333.  doi: 10.1016/S0022-1139(00)82383-0

    85. [85]

      John, E. O.; Willett, R. D.; Scott, B.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1989, 28, 893.  doi: 10.1021/ic00304a018

    86. [86]

      Ye, C. f.; Gao, H. X.; Shreeve, J. M. J. Fluorine Chem. 2007, 128, 1410.  doi: 10.1016/j.jfluchem.2007.07.006

    87. [87]

      Litvinov, B. V.; Fainzil'berg, A. A.; Pipekin, V. I.; Smirnov, S. P.; Loboiko, B. G.; Shevelev, S. A.; Nazin, G. M. Dokl. Akad. Nauk 1994, 336, 67.

    88. [88]

      Khisamutdinov, G. K.; Shevelev, S. A. Russ. Chem. Bull., Int. Ed. 2001, 50, 736.  doi: 10.1023/A:1011345819626

    89. [89]

      Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. D. Dokl. Akad. Nauk 1996, 3, 358

    90. [90]

      Fokin, A. V.; Studnev, Y. N.; Kuznetsova, L. Russ. Chem. Bull. 1996, 45, 1952.  doi: 10.1007/BF01457784

    91. [91]

      Zhang, M. Q.; Liu, H. Y, ; Wei, X. C.; Zhang, L.; Kang, L. Chem. Propellants Polym. Mater. 2017, 15, 45 (in Chinese).

    92. [92]

      Frankel, M. B.; Witucki, E. F. US 4341712, 1982.

    93. [93]

      Adolph, H. G.; Trivedi, N. J. US 6325876 B1, 2001.

    94. [94]

      Ammon, H. L.; Holden, J. R.; Du, Z. Structure and Density Predictions for Energetic Materials, 2002. http://www.chem.missouri.edu/thompson/MURI02/extended/Ammon_MURI_extended_abstract_4.pdf.

    95. [95]

      Baum, K.; Trivedi, N. J.; Lovato, J. M.; Iyer, V. K. Report NRO-1-1 (final), Fluorochem, Azusa, CA, 1993.

    96. [96]

      Chapman, R. D.; Welker, M. F; Kreutzberger, C. B. J. Org. Chem. 1998, 63, 1566.  doi: 10.1021/jo9718399

    97. [97]

      Chapman, R. D.; Gilardi, R. D.; Welker, M. F.; Kreutzberger, C. B. J. Org. Chem. 1999, 64, 960.  doi: 10.1021/jo9819640

    98. [98]

      Chapman, R. D.; Groshens, T. J. US 7563889 B1, 2009.

    99. [99]

      Chapman, R. D.; Groshens, T. J. US 8444783 B1, 2013.

    100. [100]

      Axenrod, T.; Guan, X. P.; Sun, J. G.; Qi, L.; Chapman, R. D.; Gilardi, R. D. Tetrahedron Lett. 2001, 42, 2621.  doi: 10.1016/S0040-4039(01)00260-X

    101. [101]

      Chapman, R. D.; Nguyen, B. V. US 6310204 B1, 2001.

    102. [102]

      Li, H. Ph.D. Dissertation, Nanjing University of Science & Technology, Nanjing, 2015 (in Chinese).

    103. [103]

      Mei, Y. M.S. Thesis, Nanjing University of Science & Technology, Nanjing, 2016 (in Chinese).

    104. [104]

      Archibald, T. G.; Manser, G. E. Immoos, J. E. US 5240311, 1995.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    5. [5]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(16)
  • Abstract views(2236)
  • HTML views(647)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return