Citation: Yao Dandan, Zhang Jinli, Xu Liang. C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1673-1679. doi: 10.6023/cjoc201912038 shu

C—N Coupling Reactions between Benzophenone Hydrazone and Aryl Chlorides and Boronic Acids

  • Corresponding author: Zhang Jinli, zhangjinli@tju.edu.cn Xu Liang, xuliang4423@shzu.edu.cn
  • Received Date: 26 December 2019
    Revised Date: 21 February 2020
    Available Online: 6 March 2020

    Fund Project: the National Natural Science Foundation of China 21963010the National Natural Science Foundation of China 21603150Project supported by the National Natural Science Foundation of China (Nos. 21603150, 21963010)

  • Palladium catalyzed Buchwald-Hartwig reactions between aryl halides and N-nucleophiles, and the copper catalyzed Chan-Evans-Lam reactions between aryl boronic acids and N-nucleophiles are all effective methods for constructing C-N bonds. Herein, under palladium acetate/tert-butanol system or copper acetate/dichloromethane system, benzophenone hydrazone can react with aryl chlorides and aryl boronic acids to afford corresponding aryl hydrazones, respectively. The obtained products are easily hydrolyzed to form aryl hydrazines, thus providing an indirect pathway to access aryl hydrazines from relatively less toxic reagents.
  • 加载中
    1. [1]

      Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.  doi: 10.1021/cr0505270

    2. [2]

      Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111, 6984.  doi: 10.1021/cr2000459

    3. [3]

    4. [4]

      (a) Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 169.
      (b) Köhling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213.
      (c) Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2005, 70, 2555.
      (d) Jukes, R. T. F.; Bozic, B.; Hartl, F.; Belser, P.; De Cola, L. Inorg. Chem. 2006, 45, 8326.
      (e) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 1317.
      (f) Dubost, E.; Stiebing, S.; Ferrary, T.; Cailly, T.; Fabis, F.; Collot, V. Tetrahedron 2014, 70, 8413.
      (g) Wei, W.; Wang, Z.; Yang, X.; Yu, W.; Chang, J. Adv. Synth. Catal. 2017, 359, 3378.

    5. [5]

      (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599.
      (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
      (c) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

    6. [6]

      (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2090.
      (b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251.
      (c) Mauger, C.; Mignani, G. Adv. Synth. Catal. 2005, 347, 773.

    7. [7]

      (a) Wang, Z.; Skerlj, R. T.; Bridger, G. J. Tetrahedron Lett. 1999, 40, 3543.
      (b) Arterburn, J. B.; Rao, K. V.; Ramdas, R.; Dible, B. R. Org. Lett. 2001, 3, 1351.
      (c) Lim, Y.-K.; Lee, K.-S.; Cho, C.-G. Org. Lett. 2003, 5, 979.
      (d) Halland, N.; Nazaré, M.; Alonso, J.; R'Kyek, O.; Lindenschmidt, A. Chem. Commun. 2011, 47, 1042.

    8. [8]

      (a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 8686.
      (b) DeAngelis, A.; Wang, D.-H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 3434.

    9. [9]

      Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (b) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 16136.  doi: 10.1002/anie.200300594

    10. [10]

      (a) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
      (b) Lam, M. S.; Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. Tetrahedron Lett. 2008, 49, 6192.
      (c) Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542.
      (d) Xiong, X.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14, 2552.

    11. [11]

      Chen, J.; Zhang, Y.; Hao, W.; Zhang, R.; Yi, F. Tetrahedron 2013, 69, 613.  doi: 10.1016/j.tet.2012.11.014

    12. [12]

      (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621.
      (b) Mauger, C. C.; Mignani, G. A. Org. Process Res. Dev. 2004, 8, 1065.
      (c) Lefebvre, V.; Cailly, T.; Fabis, F.; Rault, S. J. Org. Chem. 2010, 75, 2730.
      (d) Goodyear, A.; Linghu, X.; Bishop, B.; Chen, C.; Cleator, E.; McLaughlin, M.; Sheen, F. J.; Stewart, G. W.; Xu, Y.; Yin, J. Org. Process Res. Dev. 2012, 16, 605.
      (e) Wu, W.; Fan, X.-H.; Zhang, L.-P.; Yang, L.-M. RSC Adv. 2014, 4, 3364.
      (f) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.

    13. [13]

      (a) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371.
      (b) Tardiff, B. J.; Stradiotto, M. Eur. J. Org. Chem. 2012, 2012, 3972.

    14. [14]

    15. [15]

      (a) Liu, S.; Zu, W.; Zhang, J.; Xu, L. Org. Biomol. Chem. 2017, 15, 9288. (b) Liu, S.; Xu, L. Asian J. Org. Chem. 2018, 7, 1856.
      (c) Zu, W.; Liu, S.; Jia, X.; Xu, L. Org. Chem. Front. 2019, 6, 1356.
      (d) Liang, X.; Xu, L.; Li, C.; Jia, X.; Wei, Y. Tetrahedron 2019, 75, 721.
      (e) Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.

    16. [16]

      (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
      (b) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.

    17. [17]

      Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013, 78, 3636.  doi: 10.1021/jo400162d

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    18. [18]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    19. [19]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(8)
  • Abstract views(882)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return