Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines

Yahui Zhang Yang Liu Jiankang Miao Wenyan Hao

Citation:  Zhang Yahui, Liu Yang, Miao Jiankang, Hao Wenyan. Copper-Catalyzed Cascade Bicyclization of o-Alkenylphenyl Isothiocyanates with Sodium Azide Leading to the 5H-Benzo[d]tetrazolo[5, 1-b] [1, 3]thiazines[J]. Chinese Journal of Organic Chemistry, 2020, 40(8): 2426-2432. doi: 10.6023/cjoc201912036 shu

铜催化邻烯基芳基异硫氰酸酯与叠氮化钠串联双环化反应合成5H-苯并四氮唑并噻嗪化合物

    通讯作者: 郝文燕, wenyanhao@jxnu.edu.cn
  • 基金项目:

    江西省教育厅 GJJ160285

    江西省自然科学基金 2018BAB203006

    国家自然科学基金(No.21762023)、江西省自然科学基金(No.2018BAB203006)和江西省教育厅(No.GJJ160285)资助项目

    国家自然科学基金 21762023

摘要: 以低毒、廉价的铜盐作为催化剂,实现了邻烯基芳基异硫氰酸酯与叠氮化钠的串联双环化反应,简单有效地合成了一系列5H-苯并四氮唑并噻嗪衍生物.在该催化体系下,反应底物显示出良好的官能团兼容性和反应性,并以中高产率制备了5H-苯并四氮唑并噻嗪类化合物.该策略的提出为含氮、含硫小分子化合物的合成提供了一条方便的路径.

English

  • The synthesis of tetrazole has become one of the most important research topics in heterocyclic chemistry due to their important biological activities displayed in medicinal chemistry such as antituberculosis, [1] anti-allergy, [2] antiinflammatory, [3] antitumor[4] and so on. Furthermore, as the isostere of the carboxyl acid group, [5] tetrazole derivatives have attracted increasing attention and are often used as testing materials, explosives, metal coordination compounds, chemical catalysts and other materials.[6] By far, the addition of azides to isothiocyanates[7] or the [3+2] cycloaddition of an azide to a nitrile by using a Lewis acid as the catalyst have been recognized as the powerful approaches for constructing tetrazole derivatives.[8] For instance, Hantzsch and Vagt[8a] disclosed the first example of Lewis acid catalyzed addition reaction of hydrazoic acid to the cyanide group to synthesis of 5-substituted tetrazole derivatives. In 2001, Sharpless and co-workers[8b] developed this method to synthesize a variety of 5-substituted 1H-tetrazoles from sodium azide to nitriles with water as solvent. However, to our surprise, the synthesis of the polycyclic skeleton 5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazine is quite rare, only two published example are known.[8c, 9] Recently, a silver-catalyzed cascade bicyclization of o-alkynylphenyl isothiocyanates with sodium azide for the synthesis of 5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazines has been reported by our group (Scheme 1).[9] However, with the urgent demand for green and sustainable chemistry, developing a new catalytic system in place of the noble catalyst like silver or palladium would be highly desired. Of the available cheap metals, copper salt is the representative example. It is inexpensive, low toxic and environmentally friendly. The catalytic activities of copper salts are more remarkable, even comparable to those of noble metals such as palladium catalysts in cross coupling reactions.[10] Numerous catalytic systems have been developed for C—O, [11] C—N, [12] C—S[13] and C—C[14] bond formation. Meanwhile, the applications of copper catalysts in heterocycle synthesis have also been explored by many organic chemists. In continuation of our interest in the synthesis of biologically relevant heterocyclic compounds by using copper salts as the catalyst, [15] we envisioned that o-alkenylphenyl isothiocyanate could also be applied in the reaction with sodium azide by using tandem bicylization strategy.[16] Herein, we wish to introduce our recent work for the generation of 5H-benzo[d]tetrazolo[5, 1-b][1, 3]-thiazines via copper catalyzed cascade bicyclization of o-alkenylphenyl isothiocyanate with sodium azide.

    Scheme 1

    Scheme 1.  Comparison between the previous and present work

    The starting material o-alkenylphenyl isothiocyanates were easily obtained from Heck coupling of 2-iodoanilines with acrylates, acrylonitrile or N, N-dimethyl acrylamide, [17] followed by the treatment with thiophosgene according to the literature procedure.[18] In order to find an optimal reaction condition, methyl (E)-3-(2-isothiocyanatophenyl)-acrylate (1a) and sodium azide (2) were used as the model substrates (Table 1). Reaction of 1a (0.2 mmol) with sodium azide 2 (2.0 equiv.) using 10 mol% CuI and NaHCO3 (2.0 equiv.) in 2.0 mL of MeCN at 80 ℃ for 20 h afforded the desired product 3a in 25% yield (Table 1, Entry 1). Other copper salts used as catalysts in the reaction were then screened (Table 1, Entries 2~7). CuCl was found to be more effective and provided the desired product 3a in 54% yield (Table 1, Entry 3). A screen of different protonic acid effect on the reaction indicated that CH3CO2H was the best choice, leading to the desired product 3a in 89% yield (Table 1, Entry 9). Lower yields were observed when other protonic acids such as HCl, TsOH, PivOH were used as the additive (Table 1, Entries 8~11). It is worth noting that only 15% yield of product was obtained in the absence of acid (Table 1, Entry 12). When different solvents such as N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), toluene, tetrahydrofuran (THF), dichloromethane (DCM) and 1, 2-dichloroethane (DCE) were examined, it was observed that no better result emerged (Table 1, Entries 13~18). The temperature also has great impact on the reaction, and the yield of 3a was decreased to 45% when the temperature was lowered to 60 ℃ (Table 1, Entry 19). Rising the reaction temperature to 100 ℃ also resulted in a diminished yield (Table 1, Entry 20).

    Table 1

    Table 1.  Initial studies for the tandem reaction of o-alkenyl- phenyl isothiocyanate (1a) with sodium azide 2a
    下载: 导出CSV
    Entry Catalyst Additive Solvent Temp./℃ Yieldb/%
    1 CuI NaHCO3 MeCN 80 25
    2 CuBr NaHCO3 MeCN 80 28
    3 CuCl NaHCO3 MeCN 80 54
    4 Cu(OAc)2 NaHCO3 MeCN 80 53
    5 CuO NaHCO3 MeCN 80 52
    6 CuCl2 NaHCO3 MeCN 80 35
    7 Cu(OTf) 2 NaHCO3 MeCN 80 26
    8 CuCl TsOH MeCN 80 25
    9 CuCl CH3CO2H MeCN 80 89
    10 CuCl PivOH MeCN 80 45
    11 CuCl HCl MeCN 80 80
    12 CuCl MeCN 80 23
    13 CuCl CH3CO2H DMF 80 NR
    14 CuCl CH3CO2H DMSO 80 NR
    15 CuCl CH3CO2H Toluene 80 35
    16 CuCl CH3CO2H THF 80 60
    17 CuCl CH3CO2H DCM 80 27
    18 CuCl CH3CO2H DCE 80 29
    19 CuCl CH3CO2H MeCN 60 45
    20 CuCl CH3CO2H MeCN 100 82
    aReaction was performed with 1a (0.2 mmol), 2 (0.4 mmol), catalyst (0.02 mmol), acid (0.4 mmol) in solvent (2 mL) for 20 h. b Isolated yield based on o- alkenylphenyl isothiocyanate (1a).

    With the optimized conditions in hand, the reaction scope of different o-alkenylphenyl isothiocyanates was in- vestigated. The results are summarized in Table 2. All reactions proceeded smoothly, leading to the desired 5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazines in moderate to good yields. As shown in Table 2, substrates 1 bearing different ester groups including COOMe, COOEt, COOnBu, COOiBu, COOtBu were all tolerated in the reaction to afford the corresponding products 3a~3e in good yields. Electronic properties and substitution position on the benzene ring of substrate 1 did not hamper the reaction process. With both of electron withdrawing groups, such as F, Cl, Br, CF3, and electron-donating group CH3 on the benzene ring, the reactions could afford the desired products in moderate yields 3f~3l. To further demonstrate the substrate scope, the reactions of (E)-3-(2-isothiocyanato- phenyl)acrylonitrile (1m) and (E)-3-(2-isothiocyanato- phenyl)-N, N-dimethylacrylamides (1p) with sodium azide 2 were next investigated. As shown in Table 2, the reactions proceeded well under the optimized conditions to afford the desired products 3m and 3p in 80% and 84% yield, respectively. Compared with the electron-donating group (CH3) on the benzene ring (3o and 3r), the reaction of (E)-3-(2-isothiocyanatophenyl)acrylonitriles or (E)-3-(2-isothiocyanatophenyl)-N, N-dimethylacrylamides bearing electron-withdrawing group (Cl or F) could lead to the desired products (3n and 3q) in lower yields.

    Table 2

    Table 2.  Synthesis of 5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazines via the copper(I)-promoted tandem reaction of o-alkenylphenyl isothiocyanates a
    下载: 导出CSV
    aReaction was performed with o-alkenylphenyl isothiocyanates 1 (0.2 mmol), sodium azide 2 (0.4 mmol), CH3COOH (0.4 mmol), CuCl (0.02 mmol) in MeCN (2 mL) under 80 ℃ for 20 h.

    The structure of 3a was corroborated by X-ray diffraction analysis of the crystal structure of 3a, and its ORTEP diagram is displayed in Figure 1.

    Figure 1

    Figure 1.  Single-crystal X-ray diffraction structure of 3a

    The thermal ellipsoids are at a 30% probability level, the CCDC number is 1959528

    Interestingly, when DMF was used as the solvent and trimethylchlorosilane as the additive, the reaction between 1a and sodium azide 2 still could happen at room temperature and a sulfur-containing five-membered ring 4 (the structure of 4 was corroborated by X-ray diffraction analysis) can be obtained in 97% yield. Then intermediate 4 were treated with iodine in the presence of sodium hydrogencarbonate to give methyl 1-(1, 2, 3, 4-thiatriazol-5-yl)-1H-indole-2-carboxylate 5 in 45% yield (Scheme 2).

    Scheme 2

    Scheme 2.  Synthesis of indole from o-alkenylphenyl isothiocyanate

    A possible mechanism for this transformation was proposed in Scheme 3. Firstly, a [3+2] cycloaddition of azido anion 2 to an isothiocyanate moiety in substrate 1 would occur to produce the intermediate A. Then, intermediate A could undergo isomerization to afford intermediate B. Next, copper-catalyzed intramolecular Michael addition occurred to give the intermediate C. Finally, the protonation of intermediate C would happen to give the target product 3.

    Scheme 3

    Scheme 3.  Proposed mechanistic pathway

    In summary, a new method for the synthesis of various valuable 5H-benzo[d]tetrazolo[5, 1-b][1, 3] thiazines from easily available o-alkenylphenyl isothiocyanates and sodium azide in one pot has been developed. Mechanistically, stepwise [3+2] cycloaddition-Michael addition-proto- nation sequence, is proposed. This present cascade bicyclization strategy provided an effective route for the generation of small molecular N-, and S-heterocycles.

    1H NMR and 13C NMR spectra were recorded in 400 MHz apparatus and the frequencies for 1H NMR and 13C NMR test are 400 MHz and 100 MHz, respectively. The chemical shifts were reported with TMS as internal standard. Melting points were tested in an X-4A instrument without correcting temperature and the HRMS were obtained under ESI model in a mass spectrometer equipped with TOF analyzer. All other chemicals and solvents used in the experiments were obtained from commercial sources and used directly without further treatment. o-Alkenyl-phenyl isothiocyanates 1 were synthesized following literature processes.[17-18]

    A mixture of o-alkenylphenyl isothiocyanate 1 (0.20 mmol), sodium azide 2 (0.4 mmol), CuCl (10 mol%) and CH3COOH (0.40 mmol) was added into a tube. Subsequently MeCN (2 mL) was added. Then, the sealed tube was heated at 80 ℃ for 20 h. After completion of reaction as indicated by thin-layer chromatography (TLC), the mixture was concentrated and directly purified by flash column chromatography (EtOAc/petroleum ether, V:V=1:2) to give the desired product 3.

    Methyl 2-(5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3a): Yellow solid, 46.7 mg, 89% yield. m.p. 140.1~141.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.00 (d, J=8.0 Hz, 1H), 7.47~7.52 (m, 1H), 7.40 (d, J=4.0 Hz, 2H), 4.71 (d, J=8.4 Hz, 1H), 3.60 (s, 3H), 2.61~2.75 (dq, J=8.8, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.5, 148.9, 130.9, 130.2, 129.4, 128.0, 124.9, 119.2, 52.3, 42.2, 39.8; HRMS calcd for C11H11N4O2S (M+H+) 263.0597, found 263.0600.

    Ethyl 2-(5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3b): Yellow solid, 48.6 mg, 88% yield. m.p. 156.6~158.4 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.07 (d, J=8.0 Hz, 1H), 7.56~7.60 (m, 1H), 7.49 (d, J=3.6 Hz, 2H), 4.81 (dd, J=6.6, 8.4 Hz, 1H), 4.15 (dq, J=2.4, 7.2 Hz, 2H), 2.75 (dq, J=8.8, 16.8 Hz, 2H), 1.22 (t, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 169.0, 149.0, 130.9, 130.2, 129.4, 128.1, 125.0, 119.2, 61.5, 42.5, 42.2, 14.1; HRMS calcd for C12H13N4O2S (M+H+) 277.0754, found 277.0761.

    Butyl 2-(5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3c): Yellow solid, 54.8 mg, 90% yield. m.p. 98.4~99.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.08 (d, J=8.0 Hz, 1H), 7.56~7.60 (m, 1H), 7.49 (d, J=4.0 Hz, 2H), 4.80 (dd, J=6.8, 8.8 Hz, 1H), 4.09 (t, J=6.8 Hz, 2H), 2.75 (dq, J=8.8, 16.8 Hz, 2H), 1.53~1.60 (m, 2H), 1.26-1.36 (m, 2H), 0.90 (t, J=7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 169.1, 149.0, 130.9, 130.2, 129.4, 128.1, 125.0, 119.2, 65.3, 42.5, 39.8, 30.4, 19.0, 13.6; HRMS calcd for C14H17N4O2S (M+H+) 305.1067, found 305.1068.

    Isobutyl 2-(5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3d): Yellow solid, 55.4 mg, 91% yield. m.p. 102.6~103.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.99 (d, J=8.0 Hz, 1H), 7.45~7.51 (m, 1H), 7.39 (d, J=4.0 Hz, 2H), 4.72 (dd, J=6.8, 8.8 Hz, 1H), 3.79 (dq, J=2.4, 6.8 Hz, 2H), 2.69 (dq, J=8.8, 16.4 Hz, 2H), 1.74~1.84 (m, 1H), 0.79 (dd, J=0.8, 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 169.1, 148.9, 130.9, 130.2, 129.4, 128.1, 125.0, 119.2, 71.5, 42.4, 39.8, 27.5, 19.0; HRMS calcd for C14H17N4O2S (M+H+) 305.1067, found 305.1061.

    tert-Butyl 2-(5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3e): Yellow solid, 55.4 mg, 91% yield. m.p. 110.2~111.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.07 (d, J=8.0 Hz, 1H), 7.54~7.60 (m, 1H), 7.48 (d, J=4.0 Hz, 2H), 4.75 (dd, J=6.8, 8.8 Hz, 1H), 2.66 (dq, J=8.4, 16.4 Hz, 2H), 1.42 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 168.2, 149.1, 130.9, 130.1, 129.3, 128.1, 125.1, 119.1, 82.4, 43.5, 40.1, 28.0; HRMS calcd for C14H17N4O2S (M+H+) 305.1067, found 305.1077.

    Methyl 2-(7-fluoro-5H-benzo[d]tetrazolo[5, 1-b][1, 3]-thiazin-5-yl)acetate (3f): Yellow solid, 33.6 mg, 60% yield. m.p. 100.6~100.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.04 (d, J=8.4 Hz, 1H), 7.56 (dd, J=2.0, 8.8 Hz, 1H), 7.48 (d, J=2.0 Hz, 1H), 4.73 (dd, J=6.8, 8.4 Hz, 1H), 3.71 (s, 3H), 2.76 (dq, J=8.4, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.3, 162.1 (d, 1JCF=250 Hz), 148.5, 139.1, 127.2, 121.4 (d, 3JCF=9 Hz), 117.4 (d, 2JCF=23 Hz), 115.3, (d, 2JCF=24 Hz), 52.4, 41.9, 39.4; HRMS calcd for C11H10FN4O2S (M+H+) 281.0503, found 281.0517.

    Methyl 2-(7-chloro-5H-benzo[d]tetrazolo[5, 1-b][1, 3]- thiazin-5-yl)acetate (3g): Yellow solid, 45.1 mg, 76% yield. m.p. 111.3~112.5 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.03 (q, J=8.4 Hz, 1H), 7.55 (dd, J=2.0, 8.6 Hz, 1H), 7.49 (d, J=2.0 Hz, 1H), 4.72~4.76 (m, 1H), 3.71 (s, 3H), 2.76 (dq, J=8.0, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.3, 148.7, 135.1, 130.4, 129.5, 128.1, 126.4, 120.6, 52.4, 42.0, 39.4; HRMS calcd for C11H10ClN4O2S (M+H+) 297.0208, found 297.0207.

    Methyl 2-(8-chloro-5H-benzo[d]tetrazolo[5, 1-b][1, 3]- thiazin-5-yl)acetate (3h): Yellow solid, 44.5 mg, 75% yield. m.p. 89.4~89.6 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.09 (s, 1H), 7.46 (d, J=8.0 Hz, 2H), 4.80 (dd, J=6.4, 8.0 Hz, 1H), 3.69 (s, 3H), 2.76 (dq, J=8.4, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.3, 149.1, 136.2, 131.6, 129.5, 129.4, 123.2, 119.5, 52.4, 42.2, 39.4; HRMS calcd for C11H10ClN4O2S (M+H+) 297.0208, found 297.0202.

    Methyl 2-(7-bromo-5H-benzo[d]tetrazolo[5, 1-b][1, 3]- thiazin-5-yl)acetate (3i): Yellow solid, 51.9 mg, 76% yield. m.p. 121.0~121.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.97 (d, J=8.4 Hz, 1H), 7.71 (d, J=8.8 Hz, 1H), 7.65 (s, 1H), 4.74 (t, J8.0 Hz, 1H), 3.71 (s, 3H), 2.76 (dq, J=8.8, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.3, 148.8, 133.4, 131.0, 129.9, 126.6, 122.9, 120.8, 52.5, 42.1, 39.3; HRMS calcd for C11H10BrN4O2S (M+H+) 340.9702, found 340.9691.

    Methyl2-(7-(trifluoromethyl)-5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetate (3j): Yellow solid, 33.0 mg, 50% yield. m.p. 148.6~149.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.24 (d, J=8.4 Hz, 1H), 7.86 (d, J=7.6 Hz, 1H), 7.78 (s, 1H), 4.86 (t, J=8.0 Hz, 1H), 3.70 (s, 3H), 2.80 (dq, J=8.4, 16.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 169.1, 149.4, 133.3, 131.5 (q, JCF3=33 Hz), 127.4 (d, 4JCF=4 Hz), 125.6 (d, 4JCF=3 Hz), 125.5, 124.4, 119.9, 52.5, 42.1, 39.5; HRMS calcd for C12H10F3N4O2S (M+H+) 331.0471, found 331.0480.

    Methyl 2-(7-methyl-5H-benzo[d]tetrazolo[5, 1-b][1, 3]- thiazin-5-yl)acetate (3k): Yellow solid, 42.0 mg, 76% yield. m.p. 105.6~105.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=8.4 Hz, 1H), 7.36 (d, J=8.0 Hz, 1H), 7.26 (s, 1H), 4.72 (dd, J=6.4, 8.8 Hz, 1H), 3.69 (s, 3H), 2.73 (dq, J=8.8, 16.8 Hz, 2H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 169.6, 148.5, 139.9, 130.8, 128.7, 128.3, 124.8, 119.1, 52.3, 42.3, 39.9, 21.2; HRMS calcd for C12H13N4O2S (M+H+) 277.0754, found 277.0751.

    Methyl 2-(8-methyl-5H-benzo[d]tetrazolo[5, 1-b][1, 3]- thiazin-5-yl)acetate (3l): Yellow solid, 40.9 mg, 74% yield. m.p. 193.6~193.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.88 (s, 1H), 7.36 (d, J=8.0 Hz, 1H), 7.28 (d, J=8.0 Hz, 1H), 4.76 (t, J=8.0 Hz, 1H), 3.68 (s, 3H), 2.68~32.82 (m, 2H), 2.48 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 169.5, 148.9, 140.8, 130.7, 130.1, 127.8, 122.0, 119.5, 52.2, 42.4, 39.6, 21.3; HRMS calcd for C12H13N4O2S (M+H+) 277.0754, found 277.0757.

    2-(5H-Benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)aceto- nitrile (3m): Yellow solid, 36.7 mg, 80% yield. m.p. 178.6~179.8 ℃; 1H NMR(400 MHz, CDCl3) δ: 8.00 (d, J=8.0 Hz, 1H), 7.62 (t, J=7.6 Hz, 2H), 7.54 (t, J=7.6 Hz, 1H), 5.17 (t, J=6.4 Hz, 1H), 3.16 (dq, J=7.2, 17.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 148.5, 131.1, 130.8, 129.9, 129.6, 124.3, 119.0, 117.7, 39.1, 27.1; HRMS calcd for C10H8N5S (M+H+) 230.0495, found 230.0505.

    2-(7-Chloro-5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetonitrile (3n): Yellow solid, 27.4 mg, 52% yield. m.p. 188.6~189.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.10 (d, J=8.8 Hz, 1H), 7.64 (dd, J=2.0, 8.8 Hz, 1H), 7.54 (d, J=2.0 Hz, 1H), 4.56 (t, J=7.6 Hz, 1H), 2.85 (dq, J=6.4, 17.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 148.9, 135.6, 131.4, 128.4, 124.2 121.0, 119.5, 114.9, 39.5, 27.3; HRMS calcd for C10H7ClN5S (M+H+) 264.0105, found 264.0114.

    2-(7-Methyl-5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetonitrile (3o): Yellow solid, 40.9 mg, 84% yield. m.p. 168.0~168.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=8.8 Hz, 1H), 7.50 (d, J=2.8 Hz, 2H), 5.17 (d, J=6.8 Hz, 1H), 3.21 (dq, J=6.8, 17.2 Hz, 2H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 148.1, 139.8, 131.6, 129.7, 128.6, 124.2, 118.9, 117.7, 27.2, 21.2; HRMS calcd for C11H10N5S (M+H+) 244.0651, found 244.0656.

    2-(5H-Benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)-N, N- dimethylacetamide (3p): Yellow solid, 46.3 mg, 84% yield. m.p. 140.6~140.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (d, J=8.0 Hz, 1H), 7.38~7.50 (m, 3H), 4.91 (q, J=4.8 Hz, 1H), 2.87 (s, 3H), 2.80 (dd, J=9.2, 16.4 Hz, 1H), 2.73 (s, 3H), 2.59 (dd, J=4.8, 16.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 167.9, 149.6, 131.0, 129.9, 129.4, 128.4, 125.8, 119.0, 41.0, 40.2, 36.9, 35.6; HRMS calcd for C12H14N5OS (M+H+) 276.0914, found 276.0918.

    2-(7-Fluoro-5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)-N, N-dimethylacetamide (3q): Yellow solid, 38.7 mg, 66% yield. m.p. 182.3~182.5 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.98 (q, J=4.8 Hz, 1H), 7.17~7.24 (m, 2H), 4.90 (dd, J=5.6, 8.4 Hz, 1H), 2.88 (s, 3H), 2.81 (dd, J=8.8, 16.8 Hz, 1H), 2.76 (s, 3H), 2.62 (dd, J=5.2, 16.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 167.7, 162.1 (d, 1JCF=250 Hz), 149.2, 128.2 (d, 3JCF=8 Hz), 127.4 (d, 4JCF=3 Hz), 121.1 (d, 3JCF=9 Hz), 117.1 (d, 2JCF=23 Hz), 115.6 (d, 2JCF=24 Hz), 41.2, 39.8, 36.9, 35.7; HRMS calcd for C12H13FN5OS (M+H+) 294.0819, found 294.0814.

    N, N-Dimethyl-2-(7-methyl-5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazin-5-yl)acetamide (3r): Yellow solid, 50.9 mg, 88% yield. m.p. 174.7~174.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.87 (q, J=8.4 Hz, 1H), 7.45 (s, 1H), 7.40 (d, J=8.4 Hz, 1H), 5.00 (dd, J=4.4, 10.0 Hz, 1H), 3.03 (dd, J=10.0, 16.8 Hz, 1H), 2.81 (s, 3H), 2.77 (s, 3H), 2.75 (dd, J=4.8, 16.8 Hz, 1H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 168.6, 149.4, 139.6, 130.7, 129.6, 128.8, 126.0, 118.5, 41.2, 36.7, 35.4, 21.2; HRMS calcd for C13H16N5OS (M+H+) 290.1070, found 290.1084.

    A mixture of o-alkenylphenyl isothiocyanate 1 (0.20 mmol), sodium azide 2 (0.4 mmol), CuCl (10 mol%), (CH3)3SiCl (3.0 equiv.) was added into a tube. Subsequently DMF (2 mL) was added. Then, the reaction was carried out at room temperture for 16 h. After completion of reaction as indicated by TLC, the mixture was concentrated and directly purified by flash column chromatography (EtOAc/petroleum ether, V:V=1:2) to give the desired product methyl (E)-3-(2-((1, 2, 3, 4-thiatriazol-5-yl)- amino)phenyl)acrylate (4): Yellow solid, 50.9 mg, 97% yield. m.p. 155.0~157.0 ℃; 1H NMR (400 MHz, CDCl3) δ: 10.47 (s, 1H), 7.90 (d, J=15.6 Hz, 1H), 7.43~7.61 (m, 3H), 7.28 (s, 1H), 6.81 (s, 1H), 3.87 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 178.5, 167.0, 139.4, 138.7, 131.8, 128.9, 128.1, 127.6, 122.4, 121.3, 51.9; HRMS calcd for C13H16N5OS (M+H+) 263.0597, found 263.0610.

    A mixture of product 4 (0.20 mmol), I2 (3.0 equiv.) and NaHCO3 (2.0 equiv.) was added into a tube. Subsequently DMF (2 mL) was added. Then, the reaction was cooled at 0 ℃ for 6 h. After completion of reaction as indicated by TLC, the mixture was concentrated and directly purified by flash column chromatography (EtOAc/petroleum ether, V:V=1:2) to give the desired product methyl 1-(1, 2, 3, 4-thiatriazol-5-yl)-1H-indole-2-carboxylate (5): Yellow solid, 23.4 mg, 45% yield. m.p. 177.6~178.8 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.37 (d, J=8.0 Hz, 1H), 7.91 (d, J=8.0 Hz, 1H), 7.75 (t, J=7.6 Hz, 1H), 7.55 (t, J=7.6 Hz, 1H), 6.81 (s, 1H), 3.87 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 166.1, 148.1, 141.1, 133.4, 130.9, 129.3, 126.1, 119.5, 118.9, 113.0, 52.2; HRMS calcd for C13H16N5OS (M+H+) 261.0441, found 261.0442.

    Supporting Information 1H NMR and 13C NMR spectra for compounds 3a~3r, 4, 5. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      (a) Ren, Q. C.; Zhang, S.; Gao, C.; Xu, Z.; Ding, J. W.; Huang, L.; Feng, L. S. World Notes Antibiot. 2017, 38, 238.
      (b) Xie, M. S.; Cheng, X.; Chen, Y. G.; Wu, X. X.; Qua, G. R.; Guo, H. M. Org. Biomol. Chem. 2018, 16, 6890.

    2. [2]

      (a) Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J, E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N. J. Med. Chem. 1986, 29, 2403.
      (b) Li, G. Q.; Li, Z.; Lu, Y. H. Chin. J. Med. Chem. 1996, 6, 50.

    3. [3]

      Poonian, M. S.; Nowoswiat, E. F.; Blount, J. F. J. Med. Chem. 1976, 19, 1017. doi: 10.1021/jm00230a008

    4. [4]

      Navidpour, L.; Shadnia, H.; Shafaroodi, H. Bioorg. Med. Chem. 2007, 15, 1976. doi: 10.1016/j.bmc.2006.12.041

    5. [5]

      Singh, V. H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem. 1980, 17, 151. doi: 10.1016/S0079-6468(08)70159-0

    6. [6]

      (a) Seco, J. M.; de Araújo Farias, M.; Bachs, N. M.; Caballero, A. B.; Salinas-Castillo, A.; Rodríguez Diéguez, A. Inorg. Chim. Acta 2010, 363, 3194.
      (b) Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.
      (c) Fischer, N.; Karaghiosoff, K.; Klapotke, T. M.; Stierstorfer, J. Z. Anorg. Allg. Chem. 2010, 636, 735.
      (d) Klapötke, T. M.; Sabaté, C. M.; Welch, J. M. Eur. J. Inorg. Chem. 2009, 6, 769.
      (e) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
      (f) Odedra, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2009, 48, 2699.

    7. [7]

      (a) Yella, R.; Khatun, N.; Rout, S. K.; Patel, B. K. Org. Biomol. Chem. 2011, 9, 3235.
      (b) Seelam, M.; Kammela, P. R.; Shaikh, B.; Tamminana, R.; Bogiri, S. Chem. Heterocycl. Compd. 2018, 54, 535.
      (c) Mandapati, U.; Mandapati, P.; Pinapati, S.; Tamminana, R.; Rudraraju, R. Synth. Commun. 2018, 48, 500.
      (d) L'abbé, G.; Verhelst, G.; Toppet, S. J. Org. Chem. 1977, 42, 1159.
      (e) Han, S. Y.; Lee, J. W.; Kim, H.; Kim, Y.; Lee, S. W.; Gyoung, Y. S. Bull. Korean Chem. Soc. 2012, 33, 55.
      (f) Majji, G.; Sahoo, S. K.; Khatun, N.; Patel, B. K. Eur. J. Org. Chem. 2015, 7534.
      (g) Guin, S.; Rout, S. K.; Gogoi, A.; Nandi, S.; Ghara, K. K.; Patel, B. K. Adv. Synth. Catal. 2012, 354, 2757.
      (h) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (i) Sathishkumar, M.; Shanmugavelan, P.; Nagarajan, S.; Dinesh, M.; Ponnuswamy, A. New J. Chem. 2013, 37, 488.

    8. [8]

      (a) Hantzsch, A.; Vagt, A. Annalen 1901, 314, 339.
      (b) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945.
      (c) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2001, 3, 4091.
      (d) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525.
      (e) Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237.
      (f) Kadaba, P. K. J. Org. Chem. 1976, 41, 1073.
      (g) Gyoung, Y. S.; Shim, J. G.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4193.
      (h) Mancheno, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951.
      (i) Gutmann, B.; Roduit, J. P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2010, 49, 7101.
      (j) Razzaq, T.; Kappe, C. O. Chem.-Asian J. 2010, 5, 1274.
      (k) Bonnamour, J.; Bolm, C. Chem.-Eur. J. 2009, 15, 4543.
      (l) Lang, L. M.; Li, B. J.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Chem. Commun. 2010, 46, 448.
      (m) Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347, 1212.
      (n) Alterman, M.; Hallberg. A. J. Org. Chem. 2000, 65, 7984.
      (o) Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908.

    9. [9]

      Miao, J. K.; Zhang, Y. H.; Sang, X. Y.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 2336. doi: 10.1039/C8OB03220C

    10. [10]

      (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
      (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
      (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
      (d) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. 2007, 36, 1153.(e
      ) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
      (f) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
      (g) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
      (h) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
      (i) Yuan, C. C.; Tu, G. L.; Zhao, Y. S. Org. Lett. 2017, 19, 356.
      (c) Tu, G. L.; Yuan, C. C.; Li, Y. T.; Zhang, J. Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 15597.

    11. [11]

      (a) Rao, R. K.; Naidu, A. B.; Sekar, G. Org. Lett. 2009, 11, 1923.
      (b) Bhadra, S.; Adak, L.; Samanta, S.; Islam, A. K. M. M.; Mukherjee, M.; Ranu, B. C. J. Org. Chem. 2010, 75, 8533.
      (c) Melkonyan, F.; Topolyan, A.; Karchava, A.; Yurovskaya, V. Tetrahedron 2011, 67, 6826.
      (d) Jangili, P.; Kashanna, J.; Das, B. Tetrahedron Lett. 2013, 54, 3453.
      (e) Liu, Z.; Chen, Y. Tetrahedron Lett. 2009, 50, 3790.
      (f) Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H. J. Org. Chem. 2009, 74, 2846.
      (g) Chen, D.; Shen, G.; Bao, W. Org. Biomol. Chem. 2009, 7, 4067.
      (h) Sequeira, F. C.; Chemler, S. R. Org. Lett. 2012, 14, 4482.
      (i) Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C. D. Angew. Chem., Int. Ed. 2013, 52, 9791.
      (j) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, V. Angew. Chem., Int. Ed. 2011, 50, 7140.
      (k) Li, Y.; Li, Z.; Xiong, T.; Zhang, Q.; Zhang, X. Org. Lett. 2012, 14, 3522.

    12. [12]

      (a) Basak, A.; Ghosh, S. C.; Bhowmick, T.; Das, A. K.; Bertolasi, V. Tetrahedron Lett. 2002, 43, 5499.
      (b) Khangarot, R. K.; Kaliappan, K. P. Eur. J. Org. Chem. 2011, 6117.
      (c) Grzeszczyk, B.; Polawska, K.; Shaker, Y. M.; Stecko, S.; Mames, A.; Woznica, M.; Chmielewski, M.; Furman, B. Tetrahedron 2012, 68, 10633.
      (d) Saito, T.; Kikuchi, T.; Tanabe, H.; Yahiro, J.; Otani, T. Tetrahedron Lett. 2009, 50, 4969.
      (e) Mames, A.; Stecko, S.; Mikolajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M. J. Org. Chem. 2010, 75, 7580.
      (f) Ye, M. C.; Zhou, J.; Tang, Y. J. Org. Chem. 2006, 71, 3576.
      (g) Stecko, S.; Mames, A.; Furman, B.; Chmielewski, M. J. Org. Chem. 2009, 74, 3094.
      (h) Zhang, X.; Hsung, R. P.; Li, H.; Zhang, Y.; Johnson, W. L.; Figueroa, R. Org. Lett. 2008, 10, 3477.
      (i) Lo, M. M. C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
      (j) Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 4082.
      (k) Ye, M. C.; Zhou, J.; Huang, Z. Z.; Tang, Y. Chem. Commun. 2003, 2554.
      (l) Zhao, L.; Li, C. J. Chem.-Asian J. 2006, 1, 203.
      (m) Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H. Org. Lett. 2009, 11, 2820.

    13. [13]

      (a) Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291.
      (b) Dai, C.; Sun, X.; Tu, X.; Wu, L.; Zhan, D.; Zeng, Q. Chem. Commun. 2012, 48, 5367.
      (c) Yang, D.; Liu, H.; Yang, H.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 1999.
      (d) Chen, D.; Wu, J.; Yang, J.; Huang, L.; Xiang, Y.; Bao, W. Tetrahedron Lett. 2012, 53, 7104.
      (e) Huang, W. S.; Xu, R.; Dodd, R.; Shakespeare, W. C. Tetrahedron Lett. 2013, 54, 5214.
      (f) Chen, D.; Wang, Z. J.; Bao, W. J. Org. Chem. 2010, 75, 5768.
      (g) Kaneko, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2013, 15, 2502.
      (h) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Andy Hor, T. S.; Liu, X. G. Chem. Soc. Rev. 2015, 44, 291.
      (i) Kaiser, D.; Klodr, I.; Oost, R.; Neuhaus, J.; Maulide, N. Chem. Rev. 2019, 119, 8701.
      (j) Sangeetha, S.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 6006.
      (k) Soria-Castro, S.; Andrada, D. M.; Caminos, D. A.; Argüello, J. E.; Robert, M.; Peñéñory, A. B. J. Org. Chem. 2017, 82, 11464.

    14. [14]

      (a) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd, R. H. Org. Lett. 2002, 4, 2481.
      (b) Allen, S. E.; Walvoord, R. R.; Padillasalinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

    15. [15]

      (a) Hao, W. Y.; Zeng, J. B.; Cai, M. Z. Chem. Commun. 2014, 50, 11686.
      (b) Hao, W. Y.; J. Huang, J.; Jie, S. S.; Cai, M. Z. Eur. J. Org. Chem. 2015, 6655.
      (c) Hao, W. Y.; Sang, X. Y.; J. Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 1511.
      (d) Hao, W. Y.; Sang, X. Y.; Jiang, J.; Cai, M. Z. Tetrahedron Lett. 2016, 57, 4207.
      (e) Hao, W. Y.; Jiang, Y. Y.; Cai, M. Z. J. Org. Chem. 2014, 79, 3634.

    16. [16]

      (a) Miao, J. K.; Sang, X. Y.; Wang, Y.; Deng, S.
      F.; Hao, W. Y. Org. Biomol. Chem. 2019, 17, 6994.
      (b) Hao, W. Y.; Zhang, T. L.; Cai, M. Z. Tetrahedron 2013, 69, 9219.
      (c) Zou, F. H.; Chen, X. W.; Hao, W. Y. Tetrahedron 2017, 73, 758.
      (d) Hao, W. Y.; Tian, J.; Li, W.; Shi, R. Y.; Huang, Z. L.; Lei, A. W. Chem.-Asian J. 2016, 11, 1664.
      (e) Hao, W. Y.; Sha, Y. C.; Deng, Y.; Luo, Y.; Zeng, L.; Tang, S.; Weng, Y.; Chiang, C.-W.; Lei, A. W. Chem.-Eur. J. 2019, 25, 4931.

    17. [17]

      (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
      (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.

    18. [18]

      (a) Benati, L.; Calestani, G.; Leadini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Stazzari, S.; Zanardi, G. J. Org. Chem. 2003, 68, 3454.
      (b) Saito, T.; Nihei, H.; Otani, T.; Suyama, T.; Furukawa, N.; Saito, M. Chem. Commun. 2008, 172.

  • Scheme 1  Comparison between the previous and present work

    Figure 1  Single-crystal X-ray diffraction structure of 3a

    The thermal ellipsoids are at a 30% probability level, the CCDC number is 1959528

    Scheme 2  Synthesis of indole from o-alkenylphenyl isothiocyanate

    Scheme 3  Proposed mechanistic pathway

    Table 1.  Initial studies for the tandem reaction of o-alkenyl- phenyl isothiocyanate (1a) with sodium azide 2a

    Entry Catalyst Additive Solvent Temp./℃ Yieldb/%
    1 CuI NaHCO3 MeCN 80 25
    2 CuBr NaHCO3 MeCN 80 28
    3 CuCl NaHCO3 MeCN 80 54
    4 Cu(OAc)2 NaHCO3 MeCN 80 53
    5 CuO NaHCO3 MeCN 80 52
    6 CuCl2 NaHCO3 MeCN 80 35
    7 Cu(OTf) 2 NaHCO3 MeCN 80 26
    8 CuCl TsOH MeCN 80 25
    9 CuCl CH3CO2H MeCN 80 89
    10 CuCl PivOH MeCN 80 45
    11 CuCl HCl MeCN 80 80
    12 CuCl MeCN 80 23
    13 CuCl CH3CO2H DMF 80 NR
    14 CuCl CH3CO2H DMSO 80 NR
    15 CuCl CH3CO2H Toluene 80 35
    16 CuCl CH3CO2H THF 80 60
    17 CuCl CH3CO2H DCM 80 27
    18 CuCl CH3CO2H DCE 80 29
    19 CuCl CH3CO2H MeCN 60 45
    20 CuCl CH3CO2H MeCN 100 82
    aReaction was performed with 1a (0.2 mmol), 2 (0.4 mmol), catalyst (0.02 mmol), acid (0.4 mmol) in solvent (2 mL) for 20 h. b Isolated yield based on o- alkenylphenyl isothiocyanate (1a).
    下载: 导出CSV

    Table 2.  Synthesis of 5H-benzo[d]tetrazolo[5, 1-b][1, 3]thiazines via the copper(I)-promoted tandem reaction of o-alkenylphenyl isothiocyanates a

    aReaction was performed with o-alkenylphenyl isothiocyanates 1 (0.2 mmol), sodium azide 2 (0.4 mmol), CH3COOH (0.4 mmol), CuCl (0.02 mmol) in MeCN (2 mL) under 80 ℃ for 20 h.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  1155
  • HTML全文浏览量:  160
文章相关
  • 发布日期:  2020-08-01
  • 收稿日期:  2019-12-25
  • 修回日期:  2020-05-12
  • 网络出版日期:  2020-05-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章