Citation: Zhang Lei, Yuan Sitian, Wang Peng, Liu Jinbiao. Recent Advances in Cyclization Reaction of Alkynes under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1529-1539. doi: 10.6023/cjoc201912029 shu

Recent Advances in Cyclization Reaction of Alkynes under Transition Metal-Free Conditions

  • Corresponding author: Wang Peng, 815207636@qq.com Liu Jinbiao, liujinbiao@jxust.edu.cn
  • Received Date: 21 December 2019
    Revised Date: 24 January 2020
    Available Online: 29 February 2020

    Fund Project: the National Natural Science Foundation of China 21961014the Hunan Provincial Innovation Foundation for Postgraduate CX20190060the Fundamental Research Funds for the Central Universities of Central South University, and the Innovation and Entrepreneurship Training Program of Jiangxi University of Science and Technology 201910407015the National Natural Science Foundation of China 21762018Project supported by the National Natural Science Foundation of China (Nos. 21762018, 21961014), the Hunan Provincial Innovation Foundation for Postgraduate (No. CX20190060), the Fundamental Research Funds for the Central Universities of Central South University, and the Innovation and Entrepreneurship Training Program of Jiangxi University of Science and Technology (No. 201910407015)

Figures(15)

  • Remarkable achievements have been made in the construction of carbocyclic (heterocyclic) compounds through cyclization reaction of alkynes. It is vitally important to achieve the high selectivity of cyclization reactions, and neighboring group-participated selective cyclization reaction of alkynes is widely considered as an effective strategy. In this review, the recent advances in neighboring group-participated cyclization reaction of alkynes under transition metal-free conditions are summarized.
  • 加载中
    1. [1]

      (a) Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Chem. Rev. 2016, 116, 5894.
      (b) Zheng, Z. T.; Wang, Z. X.; Wang, Y. L.; Zhang, L. M. Chem. Soc. Rev. 2016, 45, 4448.
      (c) Yuan, S. T.; Zhou, H. W.; Gao, L.; Liu, J. B.; Qiu, G. Y. S. Org. Lett. 2018, 20, 562.
      (d) Wang, Y. C.; Wang, R. X.; Qiu, G. Y. S.; Zhou, H. W.; Xie, W. L.; Liu, J. B. Org. Chem. Front. 2019, 6, 2471.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73.  doi: 10.1039/b316241a

    7. [7]

      Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571.  doi: 10.1016/S0040-4020(03)00073-5

    8. [8]

      Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi, A. Tetrahedron 2008, 64, 7301.  doi: 10.1016/j.tet.2008.05.059

    9. [9]

      Stoll, A. H.; Knochel, P. Org. Lett. 2008, 10, 113.  doi: 10.1021/ol7025872

    10. [10]

      Arcadi, A.; Bianchi, G.; Inesi, A.; Marinelli, F.; Rossi, L. Eur. J. Org. Chem. 2008, 2008, 783.  doi: 10.1002/ejoc.200701011

    11. [11]

      (a) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037.
      (b)Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62.

    12. [12]

      Voss, T.; Chen, C.; Kehr, G.; Nauha, E.; Erker, G.; Stephan, D. W. Chem.-Eur. J. 2010, 16, 3005.  doi: 10.1002/chem.200903483

    13. [13]

      Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Leowanawat, P.; Kuhakarn, C. Org. Biomol. Chem. 2017, 15, 3662.  doi: 10.1039/C7OB00366H

    14. [14]

      Han, D. D.; Li, Z. M.; Fan, R. H. Org. Lett. 2014, 16, 6508.  doi: 10.1021/ol5034139

    15. [15]

      Shi, Q.; Li, P. H.; Zhang, Y.; Wang, L. Org. Chem. Front. 2017, 4, 1322.  doi: 10.1039/C7QO00152E

    16. [16]

      Chen, F.; Meng, Q.; Han, S. Q.; Han, B. Org. Lett. 2016, 18, 3330.  doi: 10.1021/acs.orglett.6b01427

    17. [17]

      Zhou, N. N.; Yan, Z. F.; Zhang, H. L.; Wu, Z. K.; Zhu, C. J. Org. Chem. 2016, 81, 12181.  doi: 10.1021/acs.joc.6b01847

    18. [18]

      Huo, Z. B.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266.  doi: 10.1021/jo902603v

    19. [19]

      (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 4764.
      (b) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z. B. Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720.

    20. [20]

      Bianchi, G.; Chiarini, M.; Marinelli, F.; Rossi, L.; Arcadi, A. Adv. Synth. Catal. 2010, 352, 136.  doi: 10.1002/adsc.200900668

    21. [21]

      Kanazawa, C.; Terada, M. Chem.-Asian J. 2009, 4, 1668.  doi: 10.1002/asia.200900342

    22. [22]

      Dev, K.; Maurya, R. RSC Adv. 2015, 5, 13102.  doi: 10.1039/C4RA10452H

    23. [23]

      Brahmchari, D.; Verma, A. K.; Mehta, S. J. Org. Chem. 2018, 83, 3339.  doi: 10.1021/acs.joc.7b02903

    24. [24]

      Tan, J.; Tong, Y.; Chen, Z. Y. ChemistrySelect 2018, 3, 3886.  doi: 10.1002/slct.201800666

    25. [25]

      Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem. 2009, 75, 897.

    26. [26]

      Du, J. Y.; Ma, Y. H.; Yuan, R. Q.; Nie, S. Z.; Ma, C. L.; Li, C. Z.; Zhao, C. Q. Org. Lett. 2018, 20, 477.  doi: 10.1021/acs.orglett.7b03863

    27. [27]

      Jung, Y.; Singh, D. K.; Kim, I. Beilstein. J. Org. Chem. 2016, 12, 2689.  doi: 10.3762/bjoc.12.266

    28. [28]

      Warner, A. J.; Churn, A.; McGough, J. S.; Ingleson, M. J. Angew. Chem., Int. Ed. 2017, 56, 354.  doi: 10.1002/anie.201610014

    29. [29]

      Verma, A. K.; Rustagi, V.; Aggarwal, T.; Singh, A. P. J. Org. Chem. 2010, 75, 7691.  doi: 10.1021/jo101526b

    30. [30]

      Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228.  doi: 10.1021/ol200481u

    31. [31]

      Uchiyama, M.; Ozawa, H.; Takuma, K.; Matsumoto, Y.; Yonehara, M.; Hiroya, K. Org. Lett. 2006, 8, 5517.  doi: 10.1021/ol062190+

    32. [32]

      Kanazawa, C.; Terada, M. Tetrahedron Lett. 2007, 48, 933.  doi: 10.1016/j.tetlet.2006.12.015

    33. [33]

      Mancuso, R.; Pomelli, C. C.; Malafronte, F.; Maner, A.; Marino, N.; Chiappe, C.; Gabriele, B. Org. Biomol. Chem. 2017, 15, 4831.  doi: 10.1039/C7OB00962C

    34. [34]

      (a) Zheng, Y. N.; Liu, M. L.; Qiu, G. Y. S.; Xie, W. L.; Wu, J. Tetrahedron 2019, 75, 1663.
      (b) Wang, Y. H.; Qiu, G. Y. S.; Zhou, H. W.; Xie, W. L.; Liu, J. B. Tetrahedron 2019, 75, 3850.

    35. [35]

      Schlemmer, C.; Andernach, L.; Schollmeyer, D.; Straub, B. F.; Opatz, T. J. Org. Chem. 2012, 77, 10118.  doi: 10.1021/jo3017378

    36. [36]

      Mehta, S.; Yao, T.; Larock, R. C. J. Org. Chem. 2012, 77, 10938.  doi: 10.1021/jo301958q

    37. [37]

      (a) Wang, R. X.; Yuan, S. T.; Liu, J. B.; Wu, J.; Qiu, G. Y. S. Org. Biomol. Chem. 2018, 16, 4501.
      (b) Wang, Y. H.; Ouyang, B.; Qiu, G. Y. S.; Zhou, H. W.; Liu, J. B. Org. Biomol. Chem. 2019, 17, 4335.

    38. [38]

      Mehta, S.; Waldo, J. P.; Larock, R. C. J. Org. Chem. 2008, 74, 1141.

    39. [39]

      (a) Faizi, D. J.; Davis, A. J.; Meany, F. B.; Blum, S. A. Angew. Chem., Int. Ed. 2016, 55, 14286.
      (b)Issaian, A.; Faizi, D. J.; Bailey, J. O.; Mayer, P.; Berionni, G.; Singleton, D. A. Blum, S. A. J. Org. Chem. 2017, 82, 8165.

    40. [40]

      Xu, J.; Yu, X. X.; Yan, J. X.; Song, Q. L. Org. Lett. 2017, 19, 6292.  doi: 10.1021/acs.orglett.7b02971

    41. [41]

      (a) Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895.
      (b) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578.

    42. [42]

      (a) Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677.
      (b) Yao, T.; Campo, M. A.; Larock, R. C. J. Org. Chem. 2005, 70, 3511.

    43. [43]

      Li, C. W.; Wang, C. I.; Liao, H. Y.; Chaudhuri, R.; Liu, R. S. J. Org. Chem. 2007, 72, 9203.  doi: 10.1021/jo701504m

    44. [44]

      Chen, Y.; Huang, C. L.; Liu, X. C.; Perl, E.; Chen, Z. W.; Namgung, J.; Zhang, G.; Hersh, W. H. J. Org. Chem. 2014, 79, 3452.  doi: 10.1021/jo5001803

    45. [45]

      Alam, K.; Kim, J. G.; Kang, D. Y.; Park, J. K. Adv. Synth. Catal. 2019, 361, 1683.  doi: 10.1002/adsc.201801506

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    15. [15]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    16. [16]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(46)
  • Abstract views(2560)
  • HTML views(902)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return