Citation: Liu Yuanhua, Dong Xiu-Qin, Zhang Xumu. Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1096-1104. doi: 10.6023/cjoc201912025 shu

Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation

  • Corresponding author: Dong Xiu-Qin, xiuqindong@whu.edu.cn
  • Received Date: 19 December 2019
    Revised Date: 20 January 2020
    Available Online: 31 May 2020

    Fund Project: the National Natural Science Foundation of Jiangsu Province SBK2019041078the Wuhan Morning Light Plan of Youth Science 2017050300307the National Natural Science Foundation of China 21502145Project supported by the National Natural Science Foundation of China (No. 21502145), the Wuhan Morning Light Plan of Youth Science and Technology (No. 2017050300307) and the National Natural Science Foundation of Jiangsu Province (No. SBK2019041078)

Figures(21)

  • Transition metal complexes-catalyzed homogeneous asymmetric hydrogenation is an important method for the synthesis of chiral compounds. At present, it is mainly focused on precious transition metal catalytic systems, such as ruthenium, rhodium, iridium and palladium. However, they are suffered from the difficulties of limited resource, high cost and environmental contamination. Therefore, it is important and necessary to develop catalytic systems based on cheap, non-toxic or low toxic, environmentally friendly and earth-abundant iron, cobalt, nickel, copper transition metal, which are in accordance with the requirements and research trend of the sustainable development of modern chemistry. The recent progress of nickel-catalyzed homogeneous asymmetric hydrogenation of prochiral unsaturated compounds containing carbon oxygen double bond (C=O), carbon carbon double bond (C=C) and carbon nitrogen double bond (C=N) is reviewed, and some breakthroughs and considerable research results achieved are introduced. In addition, the advantages and disadvantages of different types of substrates in nickel catalyst system are analyzed, and the future research direction is prospected.
  • 加载中
    1. [1]

    2. [2]

      (a) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282.
      (b) Morris, R. H. Acc. Chem. Res. 2015, 48, 1494.
      (c) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687.
      (d) Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X. Acc. Chem. Res. 2015, 48, 2587.
      (e) Harman, W. H.; Peters, J. C. Chem. Rev. 2015, 115, 3170.
      (f) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.

    3. [3]

      (a) Tai, A. and Sugimura, T. In Chiral Catalysts Immobilization and Recycling, Eds.: De Vos, D. E.; Vankelecom, I. F. J.; Jacobs, P. A., Wiley-VCH, Weinheim, 2000.
      (b) Sarko, C. R.; DiMare, M.; Yus, M.; Alonso, F. e-EROS Encyclopedia of Reagents for Organic Synthesis, Wiley-VCH, Weinheim 2014.
      (c) Angulo, I. M.; Kluwer, A. M.; Bouwman, E. Chem. Commun. 1998, 2689.
      (d) Angulo, I. M.; Bouwman, E.; van Gorkum, R.; Lok, S. M.; Lutz, M.; Spek, A. L. J. Mol. Catal. A: Chem. 2003, 202, 97.
      (e) Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080.
      (f) Cammarota, R. C.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 12486.

    4. [4]

      Shevlin, M.; Friedfeld, M. R.; Sheng, H.; Pierson, N. A.; Hoyt, J. M.; Campeau, L.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3562.  doi: 10.1021/jacs.6b00519

    5. [5]

      Hamada, Y.; Koseki, Y.; Fujii, T.; Maeda, T.; Hibino, T.; Makino, K. Chem. Commun. 2008, 6206.
       

    6. [6]

      Hibino, T.; Makino, K.; Sugiyama, T.; Hamada, Y. ChemCatChem 2009, 1, 237.  doi: 10.1002/cctc.200900084

    7. [7]

      Dong, Z. R.; Li, Y. Y.; Yu, S. L.; Sun, G. S.; Gao, J. X. Chin. Chem. Lett. 2012, 23, 533.  doi: 10.1016/j.cclet.2012.02.005

    8. [8]

      Corma, A.; Iglesias, M.; Del Pino, C.; Sanchez, F. J. Organomet. Chem. 1992, 431, 233.  doi: 10.1016/0022-328X(92)80121-D

    9. [9]

      Yang, P.; Xu, H.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 12210.  doi: 10.1002/anie.201407744

    10. [10]

      Guo, S. Y.; Yang, P.; Zhou, J. Chem. Commun. 2015, 51, 12115.  doi: 10.1039/C5CC01632K

    11. [11]

      Guo, S.; Zhou, J. Org. Lett. 2016, 18, 5344.  doi: 10.1021/acs.orglett.6b02662

    12. [12]

      Gao, W.; Lv, H.; Zhang, T.; Yang, Y.; Chung, L. W.; Wu, Y.; Zhang, X. Chem. Sci. 2017, 8, 6419.  doi: 10.1039/C7SC02669B

    13. [13]

      Li, X.; You, C.; Li, S.; Lv, H.; Zhang, X. Org. Lett. 2017, 19, 5130.  doi: 10.1021/acs.orglett.7b02417

    14. [14]

      Long, J.; Gao, W.; Guan, Y.; Lv, H.; Zhang, X. Org. Lett. 2018, 20, 5914.  doi: 10.1021/acs.orglett.8b02579

    15. [15]

      Han, Z.; Liu, G.; Zhang, X.; Li, A.; Dong, X.-Q.; Zhang, X. Org. Lett. 2019, 21, 3923.  doi: 10.1021/acs.orglett.9b00994

    16. [16]

      Guan, Y.; Han, Z.; Li, X.; You, C.; Tan, X.; Lv, H.; Zhang, X. Chem. Sci. 2019, 10, 252.  doi: 10.1039/C8SC04002H

    17. [17]

      You, C.; Li, X.; Gong, Q.; Wen, J.; Zhang, X. J. Am. Chem. Soc. 2019, 141, 14560.  doi: 10.1021/jacs.9b07957

    18. [18]

      Xu, H.; Yang, P.; Chuanprasit, P.; Hirao, H.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 5112.  doi: 10.1002/anie.201501018

    19. [19]

      Yang, P.; Lim, L. H.; Chuanprasit, P.; Hirao, H.; Zhou, J. Angew. Chem., Int. Ed. 2016, 55, 12083.  doi: 10.1002/anie.201606821

    20. [20]

      Zhao, X.; Xu, H.; Huang, X.; Zhou, J. Angew. Chem., Int. Ed. 2019, 58, 292.  doi: 10.1002/anie.201809930

    21. [21]

      Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2019, 58, 7329.  doi: 10.1002/anie.201902576

    22. [22]

      Liu, Y.; Yi, Z.; Tan, X.; Dong, X.-Q.; Zhang, X. iScience 2019, 19, 63.  doi: 10.1016/j.isci.2019.07.004

    23. [23]

      Zhao, X.; Zhang, F.; Liu, K.; Zhang, X.; Lv, H. Org. Lett. 2019, 21, 8966.  doi: 10.1021/acs.orglett.9b03365

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    13. [13]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(66)
  • Abstract views(2477)
  • HTML views(683)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return