Citation: Zhang Longfei, Niu Cong, Yang Xiaoting, Qin Hongyun, Yang Jianjing, Wen Jiangwei, Wang Hua. Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1117-1128. doi: 10.6023/cjoc201912011 shu

Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions

  • Corresponding author: Wen Jiangwei, wenjy@qfnu.edu.cn Wang Hua, huawang@qfnu.edu.cn
  • Received Date: 9 December 2019
    Revised Date: 9 January 2020
    Available Online: 21 January 2020

    Fund Project: the National Natural Science Foundation of China 21902083the Qufu Normal University Research Startup Fund 6132the College Students Innovation and Entrepreneurship Training Project of Shandong Province S201910446044the Major Basic Research Program of Natural Science Foundation of Shandong Province ZR2018ZC0129the National Natural Science Foundation of China 21675099Project supported by the National Natural Science Foundation of China (Nos. 21902083, 21675099), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2018ZC0129), the College Students Innovation and Entrepreneurship Training Project of Shandong Province (No. S201910446044) and the Qufu Normal University Research Startup Fund (Nos. 6132, 6125)the Qufu Normal University Research Startup Fund 6125

Figures(34)

  • Thiocyanate, as a versatile synthon, which has important application value in many fields such as pharmaceutical, pesticide and materials. The photocatalytic and electrocatalytic thiocyanation reactions have been widely concerned in organic chemistry due to the advantages of green, efficiency and safety. In this review, the cross-coupling/thiocyanation reactions based on the photocatalytic and electrocatalytic are described, which is expected to be helpful in exploring the green synthesis of thiocyanates compounds.
  • 加载中
    1. [1]

      (a) Capon, R. J.; Skene, C.; Liu, E. H.-T.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Org. Chem. 2001, 66, 7765.
      (b) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
      (c) Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. Med. Chem. 2002, 45, 3984.
      (d) Kokorekin, V.; Terent'ev, A.; Ramenskaya, G.; Grammatikova, N.; Rodionova, G.; Ilovaiskii, A. Pharm. Chem. J. 2013, 47, 422.
      (e) Yasman, Y.; Edrada, R. A.; Wray, V.; Proksch, P. J. Nat. Prod. 2003, 66, 1512.

    2. [2]

      (a) Khalili, D. Chin. Chem. Lett. 2015, 26, 547.
      (b) Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
      (c) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
      (d) Khalili, D. New J. Chem. 2016, 40, 2547.
      (e) Chen, Q.; Lei, Y.; Wang, Y.; Wang, C.; Wang, Y.; Xu, Z.; Wang, H.; Wang, R. Org. Chem. Front. 2017, 4, 369.
      (f) Ji, F.; Fan, Y.; Yang, R.; Yang, Y.; Yu, D.; Wang, M.; Li, Z. Asian J. Org. Chem. 2017, 6, 682.
      (g) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
      (h) Prieto, A.; Uzel, A.; Bouyssi, D.; Monteiro, N. Eur. J. Org. Chem. 2017, 2017, 4201.
      (i) Chen, Y.; Wang, S.; Jiang, Q.; Cheng, C.; Xiao, X.; Zhu, G. J. Org. Chem. 2018, 83, 716.
      (j) Khaikate, O.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Leowanawat, P.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem. 2018, 16, 8553.
      (k) Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett. 2018, 20, 1600.
      (l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
      (m) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
      (n) Noikham, M.; Yotphan, S. Eur. J. Org. Chem. 2019, 2019, 2759.

    3. [3]

      Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.  doi: 10.1039/C5CS00532A

    4. [4]

      Vekariya, R. H.; Patel, H. D. Synth. Commun. 2017, 47, 87.  doi: 10.1080/00397911.2016.1255973

    5. [5]

    6. [6]

    7. [7]

      Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 6696.  doi: 10.1016/j.tetlet.2015.10.048

    8. [8]

      Yuan, P.-F.; Zhang, Q.-B.; Jin, X.-L.; Lei, W.-L.; Wu, L.-Z.; Liu, Q. Green Chem. 2018, 20, 5464.  doi: 10.1039/C8GC02720J

    9. [9]

      Guy, R. G.; Thompson, J. J. Tetrahedron 1978, 34, 541.  doi: 10.1016/0040-4020(78)80049-0

    10. [10]

      Chen, Y.-J.; He, Y.-H.; Guan, Z. Tetrahedron 2019, 75, 3053.  doi: 10.1016/j.tet.2019.04.053

    11. [11]

      Zhang, D.; Wang, H.; Bolm, C. Chem. Commun. 2018, 54, 5772.  doi: 10.1039/C8CC03178A

    12. [12]

      Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.  doi: 10.1021/acs.joc.8b02981

    13. [13]

      Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588.  doi: 10.1021/jo5015799

    14. [14]

      Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Tetrahedron Lett. 2016, 57, 1771.  doi: 10.1016/j.tetlet.2016.03.028

    15. [15]

      Hosseini-Sarvari, M.; Hosseinpour, Z.; Koohgard, M. New J. Chem. 2018, 42, 19237.  doi: 10.1039/C8NJ03128B

    16. [16]

      Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.  doi: 10.1021/acs.joc.5b01637

    17. [17]

      Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2016, 47, 8275.

    18. [18]

      Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. Synlett 2018, 29, 176.  doi: 10.1055/s-0036-1590921

    19. [19]

      Chauhan, P.; Ritu, R.; Preeti, P.; Kumar, S.; Jain, N. Eur. J. Org. Chem. 2019, 2019, 4334.

    20. [20]

      Tambe, S. D.; Jadhav, M. S.; Rohokale, R. S.; Kshirsagar, U. A. Eur. J. Org. Chem. 2018, 2018, 4867.

    21. [21]

      Gullapalli, K.; Vijaykumar, S. Org. Biomol. Chem. 2019, 17, 2232.  doi: 10.1039/C9OB00054B

    22. [22]

      (a) Zhao, Y.; Wang, H.; Hou, X.; Hu, Y.; Lei, A.; Zhang, H.; Zhu, L. J. Am. Chem. Soc. 2006, 128, 15048.
      (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
      (c) Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 4101.
      (d) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
      (e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
      (f) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
      (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
      (h) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
      (i) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (j) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
      (k) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
      (l) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273.
      (m) Song, C.; Yi, H.; Dou, B.; Li, Y.; Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689.
      (n) Song, C.; Dong, X.; Yi, H.; Chiang, C.-W.; Lei, A. ACS Catal. 2018, 8, 2195.
      (o) Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.

    23. [23]

      Kang, L.-S.; Luo, M.-H.; Lam, C. M.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. Green Chem. 2016, 18, 3767.  doi: 10.1039/C6GC00666C

    24. [24]

      Liang, S.; Zeng, C. C.; Tian, H.; Sun, B.; Ren, F. Adv. Synth. Catal. 2018, 360, 1444.  doi: 10.1002/adsc.201701401

    25. [25]

      De Klein, W. J. Electrochim. Acta 1973, 18, 413.  doi: 10.1016/0013-4686(73)80044-1

    26. [26]

      Levy, A.; Becker, J. Y. Electrochim. Acta 2015, 178, 294.  doi: 10.1016/j.electacta.2015.07.127

    27. [27]

      Gitkis, A.; Becker, J. Y. Electroanalysis 2016, 28, 2802.  doi: 10.1002/elan.201600197

    28. [28]

      Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H. Green Chem. 2019, 21, 3597.  doi: 10.1039/C9GC01351B

    29. [29]

      Krishnan, P.; Gurjar, V. G. Synth. Commun. 1992, 22, 2741.  doi: 10.1080/00397919208021538

    30. [30]

      Krishnan P., Gurjar V. G.. J.[J]. Appl. Electrochem., 1995,25(792).  

    31. [31]

      Gitkis, A.; Becker, J. Y. J. Electroanal. Chem. 2006, 593, 29.
       

    32. [32]

      Gitkis, A.; Becker, J. Y. Electrochim. Acta 2010, 55, 5854.  doi: 10.1016/j.electacta.2010.05.035

    33. [33]

      (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40, 1195.
      (b) Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2003, 44, 8131.
      (c) Yadav, J.; Reddy, B.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004, 45, 2951.
      (d) Yadav, J.; Reddy, B.; Krishna, A.; Reddy, C. S.; Narsaiah, A. Synthesis 2005, 2005, 961.
      (e) Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347.
      (f) Akhlaghinia, B.; Pourali, A.-R.; Rahmani, M. Synth. Commun. 2012, 42, 1184.
      (g) Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Panah, F. D.; Sajjadifar, S. Helv. Chim. Acta 2012, 95, 106.

    34. [34]

      Fotouhi, L.; Nikoofar, K. Tetrahedron Lett. 2013, 54, 2903.  doi: 10.1016/j.tetlet.2013.02.106

    35. [35]

      Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.  doi: 10.1016/j.tetlet.2014.06.028

    36. [36]

      Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8, 22042.  doi: 10.1039/C8RA04407D

    37. [37]

      Yaubasarova, R. R.; Kokorekin, V. A.; Ramenskaya, G. V.; Petrosyan, V. A. Mendeleev Commun. 2019, 29, 334.  doi: 10.1016/j.mencom.2019.05.032

    38. [38]

      Sun, L.; Zhang, X.; Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 2018, 4949.  doi: 10.1002/ejoc.201800267

    39. [39]

      Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Mendeleev Commun. 2016, 5, 413.

    40. [40]

      Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Eur. J. Org. Chem. 2019, 2019, 4233.  doi: 10.1002/ejoc.201900390

    41. [41]

      Dyga, M.; Hayrapetyan, D.; Rit, R. K.; Gooßen, L. J. Adv. Synth. Catal. 2019, 361, 3548.  doi: 10.1002/adsc.201900156

    42. [42]

      Yang, S.-M.; He, T.-J.; Lin, D.-Z.; Huang, J.-M. Org. Lett. 2019, 21, 1958.  doi: 10.1021/acs.orglett.8b04136

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

Metrics
  • PDF Downloads(51)
  • Abstract views(2984)
  • HTML views(837)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return