Citation: Huang Jing, Yang Yihua, Feng Juan, Li Junzhang, Liu Shouxin. Research Progress on cis-/trans-Isomerization of Cyclic Peptide[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1473-1483. doi: 10.6023/cjoc201911030 shu

Research Progress on cis-/trans-Isomerization of Cyclic Peptide

  • Corresponding author: Yang Yihua, yihuayang@hebust.edu.cn Liu Shouxin, chlsx@hebust.edu.cn
  • Received Date: 25 November 2019
    Revised Date: 15 January 2020
    Available Online: 11 March 2020

    Fund Project: the National Natural Science Foundation of China 30873139the National Basic Research Program of China 2011CB512007the National Natural Science Foundation of China 30472074Project supported by the National Basic Research Program of China (Nos. 2011CB512007, 2012CB723501), and the National Natural Science Foundation of China (Nos. 30472074, 30873139)the National Basic Research Program of China 2012CB723501

Figures(15)

  • This paper focuses on cis-/trans-conformational interchanges of amide bonds in cyclic peptides that contain N-unsubstituted amino acids, N-methylated amino acids, and prolines. Conformational preferences of such cyclic peptides and their analogs are discussed. Proline has strong influences on the conformation due to the five-membered cyclic structure. N-Methylation not only increased the steric hindrance, but also led to increased population of cis-conformation of the amide bond.
  • 加载中
    1. [1]

      Jiang, Z.-L.; Hong, J.-L.; Liu, K.-L. Chin. J. Med. Chem. 2004, 14(2), 122 (in Chinese).
       

    2. [2]

      (a) Dougherty, P. G.; Sahni, A.; Pei. D. H. Chem. Rev. 2019, 119, 10241.
      (b) Nielsen, D. S.; Shepherd, N. E.; Xu, W. J.; Lucke, A. J.; Stoermer, M. J.; and Fairlie, D. P. Chem. Rev. 2017, 117, 8094.

    3. [3]

      (a) Naylor, M. R.; Bockus, A. T.; Blanco, M.; Lokey, R. S. Curr. Opin. Chem. Biol. 2017, 38, 141.
      (b) Xin, D. Y.; Jeffries, A.; Burgess, K. ACS Comb. Sci. 2017, 414.

    4. [4]

      Sonti, R.; Gowd, K. H.; Shashanka Rao, K. N.; Ragothama, S.; Rodriguez, A.; Perez, J. J; Balaram, P. Chem. Eur. J. 2013, 19, 15175.  doi: 10.1002/chem.201301722

    5. [5]

      Zondlo, N. J. Acc. Chem. Res. 2013, 46, 1039.  doi: 10.1021/ar300087y

    6. [6]

      Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

    7. [7]

      Smith, M. B.; March, J. Textbook of March's Advanced Organic Chemistry, 5th ed., Trans. by Li, Y.-M., Chemical Industry Publisher, 2009, p. 6 (in Chinese)

    8. [8]

      Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475.  doi: 10.1021/cr0104375

    9. [9]

      Fischer, G. Angew. Chem., Int. Ed. 1994, 33, 1415.
       

    10. [10]

      Galat, A. Curr. Top. Med. Chem. 2003, 3, 1315.  doi: 10.2174/1568026033451862

    11. [11]

      Pal, D.; Chakrabarti, P. J. Mol. Biol. 1999, 294, 271.  doi: 10.1006/jmbi.1999.3217

    12. [12]

      Siemion, I. Z.; Wieland, T.; Pook, K.-H. Angew. Chem. Int. Ed. 1975, 14, 702.  doi: 10.1002/anie.197507021

    13. [13]

      Micheau, J. C.; Zhao, J. Z. J. Phys. Org. Chem. 2007, 20, 810.  doi: 10.1002/poc.1216

    14. [14]

    15. [15]

      Räder, A. F. B.; Reichart, F.; Weinmüller, M.; Kessler, H. Bioorg. Med. Chem. 2018, 26, 2766.  doi: 10.1016/j.bmc.2017.08.031

    16. [16]

      (a) Mierke, D. F.; Yamazaki, T.; Said-Nejad, O. E.; Felder, E. R.; Goodman, M. J. Am. Chem. Soc. 1989, 111, 6847.
      (b) Said-Nejad, O. E.; Felder, E. R.; Mierke, D. F.; Yamazaki, T.; Schiller, P.; Goodman, M. Int. J. Pept. Protein Res. 1992, 39, 145.

    17. [17]

      Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.; Schiller, P. W. Acta Biochim. Pol. 2006, 53(1), 73.  doi: 10.18388/abp.2006_3363

    18. [18]

      Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.; Schiller, P. W. J. Med. Chem. 2007, 50, 1414.  doi: 10.1021/jm061294n

    19. [19]

      Jabs, A.; Weiss, M. S.; Hilgenfeld, R. J. Mol. Biol. 1999, 286, 291.  doi: 10.1006/jmbi.1998.2459

    20. [20]

      Tong, T. L.; Williamson, R. T.; William, H. G. J. Org. Chem. 2000, 65, 419.  doi: 10.1021/jo991165x

    21. [21]

      Pettit, G. R.; Srirangam, J. K.; Herald, D. L.; Erickson, K. L.; Doubek, D. L.; Schmidt, J. M.; Tackett, L. P.; Bakudc, G. J. J. Org. Chem. 1992, 57, 7217.  doi: 10.1021/jo00052a041

    22. [22]

      Forns, P.; Piro, J.; Cuevas, C.; Garcia, M.; Rubiralta, M.; Giralt, E.; Diez, A. J. Med. Chem. 2003, 46, 5825.  doi: 10.1021/jm030943h

    23. [23]

      Lopez-Martinez, C.; Flores-Morales, P.; Cruz, M.; Gonzalez, T.; Feliz, M.; Diez, A.; Campanera, J. M. Phys. Chem. Chem. Phys. 2016, 18, 12755.  doi: 10.1039/C5CP05937B

    24. [24]

      Dalisay, D. S.; Rogers, E. W.; Edison, A. S.; Molinski, T. F. J. Nat. Prod. 2009, 72, 732.  doi: 10.1021/np8007649

    25. [25]

      Nielsen, D. S.; Hoang, H. N.; Lohman, Rink-Jan; Diness, F.; Fairlie, D. P. Org. Lett. 2012, 14, 5720.  doi: 10.1021/ol3027347

    26. [26]

      Singh, E. K.; Ramsey, D. M.; McAlpine, S. R. Org. Lett. 2012, 14, 1198.  doi: 10.1021/ol203290n

    27. [27]

      (a) Wahyudi, H.; Tantisantisom, W.; Liu, X.; Ramsey, D. M.; Singh, E. K.; McAlpine, S. R. J. Org. Chem. 2012, 77, 10596.
      (b) Wahyudi, H.; Tantisantisom, W.; McAlpine, S. R. Tetrahedron Lett. 2014, 55, 2389.
      (c) Pietkiewicz, A. L.; Wahyudi, H.; McConnell, J. R.; McAlpine, S. R. Tetrahedron Lett. 2014, 55, 6979.

    28. [28]

      Chatterjee, J.; Mierke, D.; Kessler, H. J. Am. Chem. Soc. 2006, 128, 15164.  doi: 10.1021/ja063123d

    29. [29]

      Marta, P. G.; Alessandra, M.; Judit, T. P.; Fernando, A. J. Med. Chem. 2013, 56, 9780.  doi: 10.1021/jm401520x

    30. [30]

      Zhang, H. J.; Yi, Y. H.; Yang, G. J.; Hu, M. Y.; Cao, G. D.; Yang, F.; Lin, H. W. J. Nat. Prod. 2010, 73, 650.  doi: 10.1021/np9008267

    31. [31]

      Kobayashi, J. I.; Tsuda, M.; Nakamura, T.; Mikami, Y.; Shigemori, H. Tetrahedron 1993, 49, 2391.  doi: 10.1016/S0040-4020(01)86318-3

    32. [32]

      Pettit, G. R.; Srirangam, J. K.; Herald, D. L.; Xu, J.; Boyd, M. R.; Cichacz, Z.; Kamano, Y.; Schmidt, J. M.; Erickson, K. L. J. Org. Chem. 1995, 60, 8257.  doi: 10.1021/jo00130a027

    33. [33]

      (a) Vera, B.; Vicente, J.; Rodriguez, A. D. J. Nat. Prod. 2009, 72, 1555.
      (b) Aviles, E.; Rodriguez, A. D. Tetrahedron 2013, 69, 10797.

    34. [34]

      Afifi, A. H.; El-Desoky, A. H.; Kato, H.; Mangindaan, R. E. P.; Voogd, N. J. de; Ammar, N. M.; Hifnawy, M. S.; Tsukamoto, S. Tetrahedron Lett. 2016, 57, 1285.  doi: 10.1016/j.tetlet.2016.02.031

    35. [35]

      Zhan, K. X.; Jiao, W. H.; Yang, F.; Li, J.; Wang, S. P.; Li, Y. S.; Han, B. N.; Lin, H. W. J. Nat. Prod. 2014, 77, 2678.  doi: 10.1021/np5006778

    36. [36]

      (a) Gu, W.; Liu, S. X.; Silverman, R. B. Org. Lett. 2002, 4, 4171.
      (b) Liu, S..; Feng, X.; Y. Geng, ; Yao, J.; Li, J. Chin. J. Org. Chem. 2005, 25, 604 (in Chinese).
      (c) Liu, S.; Gu, W.; Lo, D.; Ding, X.; Ujiki, M.; Adrian, T. E.; Soff, G. A.; Silverman, R. B. J. Med. Chem., 2005, 48, 3630.
      (d) Liu, S.; Yang, Y.; Zhao, C.; Huang, J.; Han, C.; Han, J. Med. Chem. Commun. 2014, 5, 463.

    37. [37]

      Loosli, H. R.; Kessler, H.; Oschkinat, H.; Weber, Ha. P.; Petcher, T. J.; Widmer, A. Helv. Chim. Acta 1985, 68, 682.  doi: 10.1002/hlca.19850680319

    38. [38]

      Fesik, S. W.; Gampe, R. T.; Holzman, T. F.; Egan, D. A.; Edalji, R.; Luly, J. R.; Simmer, R.; Helfrich, R.; Kishore, V.; Rich, D. H. Science 1990, 250, 1406.  doi: 10.1126/science.2255910

    39. [39]

      Kofron, J. L.; KuzmiE, P.; Kishore, V.; Gemmecker, G.; Fesik, S. W.; Rich, D. H. J. Am. Chem. Soc. 1992, 114, 2670.  doi: 10.1021/ja00033a047

    40. [40]

      Kock, M.; Kessler, H.; Seebach, D.; Thaler, A. J. Am. Chem. Soc. 1992, 114, 2676.  doi: 10.1021/ja00033a048

    41. [41]

      Verheyden, P.; Jaspers, H.; Wolf, E. D.; Binst, G. V. Int. J. Peptide Protein Res. 1994, 44, 364.

    42. [42]

      Boger, D. L.; Michael, A. P.; Zhou, J. C. J. Am. Chem. Soc. 1995, 117, 7357.  doi: 10.1021/ja00133a009

    43. [43]

      Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040.  doi: 10.1021/ja00466a043

    44. [44]

      Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. Chem. Pharm. Bull. 1983, 31, 1424.  doi: 10.1248/cpb.31.1424

    45. [45]

      Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Chem. Pharm. Bull. 1986, 34, 3762.  doi: 10.1248/cpb.34.3762

    46. [46]

      (a) Tan, N. H.; Zhou, J. Chem. Rev. 2006, 106, 840.
      (b) Morita, H.; Takeya, K. Heterocycles 2010, 80, 739.
      (c) Zhao, S. M.; Kuang, B.; Fan, J. T.; Yan, H.; Xu, W. Y.; Tan, N. H. Chimia 2011, 65, 952.

    47. [47]

      Lee, E. J.; Hitotsuyanagi, Y.; Nakagawa, Y.; Kato, S.; Fukaya, H.; Takeya, K. Bioorg. Med. Chem. Lett. 2008, 18, 6458.  doi: 10.1016/j.bmcl.2008.10.064

    48. [48]

      (a) Inaba, T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Ogura, K. J. Org. Chem. 1987, 52, 2957.
      (b) Itokawa, H.; Morita, H.; Takeya, K. Chem. Phar. Bull. 1992, 40, 1050.
      (c) Inoue, T.; Inaba, T.; Umezawa, I.; Yuasa, M.; Itokawa, H.; Oaura, K.; Komatsu, K.; Hara, H.; Hoshino, O. Chem. Pharm. Bull. 1995, 43, 1325.
      (d) Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113, 1427.
      (e) Boger, D. L.; Yohannes, D.; Zhou, J.; Patane, M. A. J. Am. Chem. Soc. 1993, 115, 3420.
      (f) Boger, D. L.; Patane, M. A.; Zhou, J. J. Am. Chem. Soc. 1994, 116, 8544.
      (g) Boger, D. L.; Patane, M. A.; Zhou, J. J. Am. Chem. Soc. 1995, 117, 7357.
      (h) Boger, D. L.; Zhou, J. C. J. Am. Chem. Soc. 1995, 117, 7364.
      (i) Beugelmans, R.; Bigot, A.; Bois-Choussy, M.; Zhu, J. P. J. Org. Chem. 1996, 61, 771.

    49. [49]

      (a) Hitotsuyanagi, Y.; Odagiri, M.; Kato, S.; Kusano, J.; Hasuda, T.; Fukaya, H.; Takeya, K. Chem.-Eur. J. 2012, 18, 2839.
      (b) Lee, J. E.; Hitotsuyanagi, Y.; Takeya, K. Tetrahedron 2008, 64, 4117.
      (c) Lee, J. E.; Hitotsuyanagi, Y.; Kim, I. H.; Hasuda, T.; Takeya, K. Bioorg. Med. Chem. Lett. 2008, 18, 808.
      (d) Lee, J. E.; Hitotsuyanagi, Y.; Fukaya, H.; Kondo, K.; Takeya, K. Chem. Pharm. Bull. 2008, 56, 730.
      (e) Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. Tetrahedron Lett. 2004, 45, 935.
      (f) Hitotsuyanagi, Y.; Hasuda, T.; Matsumoto, Y.; Yamaguchi, K.; Itokawa, H.; Takeya, K. Chem. Commun. 2000, 1633.

    50. [50]

      Hitotsuyanagi, Y.; Kusano, J. I.; Kim, I. H.; Hasuda, T.; Fukaya, H.; Takeya, K. Phytochem. Lett. 2012, 5, 335.  doi: 10.1016/j.phytol.2012.02.014

    51. [51]

      (a) Fan, J. T.; Chen, Y. S.; Xu, W. Y.; Du, L. Ch.; Zeng, G. Z.; Zhang, Y. M.; Su, J.; Li, Y.; Tan, N. H. Tetrahedron Lett. 2010, 51, 6810.
      (b) Fan, J. T.; Su, J.; Peng, Y. M.; Li, Y.; Li, J.; Zhou, Y. B.; Zeng, G. Z.; Yan, H.; Tan, N. H. Bioorg. Med. Chem. 2010, 18, 8226.
      (c) Huang, M. B.; Zhao, S. M.; Zeng, G. Z.; Kuang, B.; Chen, X. Q.; Tan, N. H. Tetrahedron 2014, 70, 7627.
      (d) Wang, Z.; Zhao, S. M.; Zhao, L. M.; Chen, X. Q.; Zeng, G. Z.; Tan, N. H. PLoS One 2015, 10, e0144950.
      (e) Hu, Y. Y.; Feng, L.; Wang, J.; Zhang, X. J.; Wang, Z.; Tan, N. H. Chem. Biodivers. 2019, 16(1), e1899438.

    52. [52]

      Chen, X. Q.; Zhao, S. M.; Wang, Z; Zeng, G. Z.; Huang, M. B.; Tan, N. H. Tetrahedron 2015, 71, 9673.  doi: 10.1016/j.tet.2015.10.044

    53. [53]

      Abdalla, M. A.; McGaw, L. J. Molecules 2018, 23, 2080.  doi: 10.3390/molecules23082080

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    7. [7]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    8. [8]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    9. [9]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(104)
  • Abstract views(4622)
  • HTML views(1713)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return