Citation: Luo Liang, Cao Xiaomei, Lai Guowei, Liu Jinxiang, Luo Haiqing, Lu Dongliang, Zhang Yong. "On Water" Nucleophilic Addition of Pyrazolones to Trifluoromethyl Ketones[J]. Chinese Journal of Organic Chemistry, ;2020, 40(5): 1323-1330. doi: 10.6023/cjoc201910038 shu

"On Water" Nucleophilic Addition of Pyrazolones to Trifluoromethyl Ketones

  • Corresponding author: Zhang Yong, yong_zhanggnnu@126.com
  • Received Date: 29 October 2019
    Revised Date: 14 January 2020
    Available Online: 14 February 2020

    Fund Project: the Education Department of Jiangxi Province GJJ170835the Jiangxi Provincial Department of Science and Technology Fund 20144BAB2130003Project supported by the National Natural Science Foundation of China (No. 21562003), the Jiangxi Provincial Department of Science and Technology Fund (20192BAB213007 and 20144BAB2130003), and the Education Department of Jiangxi Province (No. GJJ170835)the Jiangxi Provincial Department of Science and Technology Fund 20192BAB213007the National Natural Science Foundation of China 21562003

Figures(2)

  • A green and efficient nucleophilic addition reaction of trifluoromethyl ketone with pyrazolone was developed under "on water" conditions, affording pyrazolone substituted tertiary trifluoromethyl alcohols in high yields. The advantages of being catalyst-free, column chromatography-free, environmentally benign and easy workup make it a promising method for preparation of a variety of pyrazolone substituted tertiary trifluoromethyl alcohols.
  • 加载中
    1. [1]

      (a) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259.
      (b) Anastas, P. T.; Williamson, T. C. Green Chemistry: Frontiers in Chemical Synthesis and Processes, Oxford University Press, Oxford, 1998.
      (c) Li, C. J. Chem. Rev. 2005, 105, 3095.
      (d) Sheldon, R. A. Green Chem. 2005, 7, 267.
      (e) Gawande, M. B.; Bonifacio, V. D.; Luque, R.; Branco, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 5522.

    2. [2]

      (a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751.
      (b) Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209.
      (c) Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2167.
      (d) Niu, R.; Xiao, J.; Liang, T.; Li, X. Org. Lett. 2012, 14, 676.
      (e) Shen, Z. L.; Wang, S. Y.; Chok, Y. K.; Xu, Y. H.; Loh, T. P. Chem. Rev. 2013, 113, 271.
      (f) Butler, R. N.; Coyne, A. G. Org. Biomol. Chem. 2016, 14, 9945.
      (g) Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y. Green Chem. 2016, 18, 1032.
      (h) Guo, W.; Liu, X.; Liu, Y.; Li, C. ACS Catal. 2017, 8, 328.
      (i) Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Chem. Rev. 2018, 118, 679.
      (j) Xie, P.; Wang, J.; Liu, Y.; Fan, J.; Wo, X.; Fu, W.; Sun, Z.; Loh, T. P. Nat. Commun. 2018, 9, 1321.
      (k) Han, J.; Zhang, J.-L.; Zhang, W.-Q.; Gao, Z.; Xu, L.-W.; Jian, Y. J. Org. Chem. 2019, 84, 7642.
      (l) Wang, W.; Wang, S. X.; Qin, X. Y.; Li, J. T. Synth. Commun. 2005, 35, 1263.
      (m) Wang, A.-Q.; Jin, T.-S.; Cheng, Z.-L.; Li, T.-S. Asian J. Chem. 2010, 22, 1973.
      (n) Thakur, P. B.; Meshram, H. M. RSC Adv. 2014, 4, 6019.
      (o) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao, X. Y. Chin. J. Org. Chem. 2018, 38, 585(in Chinese).
      (周曌, 段建凤, 穆小静, 肖尚友, 有机化学, 2018, 38, 585.)
      (p) Hu, X. Y.; Yu, H. F.; Wang, W. J.; Jiang, S. Q.; Liu, Q.; He, J. Chin. J. Org. Chem. 2019, 39, 3183(in Chinese).
      (胡小宇, 于海丰, 王文举, 姜思傲, 刘奇, 何洁, 有机化学, 2019, 39, 3183.) 

    3. [3]

      (a) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.
      (b) Paladhi, S.; Chauhan, A.; Dhara, K.; Tiwari, A. K.; Dash, J. Green Chem. 2012, 14, 2990.
      (c) Paladhi, S.; Bhati, M.; Panda, D.; Dash, J. J. Org. Chem. 2014, 79, 1473.
      (d) Yu, J. S.; Liu, Y. L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 9512.
      (e) Zhang, Y.; Wei, B. W.; Lin, H.; Zhang, L.; Liu, J. X.; Luo, H. Q.; Fan, X. L. Green Chem. 2015, 17, 3266.
      (f) SaiPrathima, P.; Srinivas, K.; Rao, M. M. Green Chem. 2015, 17, 2339.
      (g) Luque-Agudo, V.; Gil, M. V.; Roman, E.; Serrano, J. A. Green Chem. 2016, 18, 3844.
      (h) Balaraman, K.; Ding, R.; Wolf, C. Adv. Synth. Catal. 2017, 359, 4165.
      (i) Dilauro, G.; Dell'Aera, M.; Vitale, P.; Capriati, V.; Perna, F. M. Angew. Chem., Int. Ed. 2017, 56, 10200.
      (j) Zhu, S.; Chen, C. Q.; Xiao, M. Y.; Yu, L. P.; Wang, L.; Xiao, J. Green Chem. 2017, 19, 5653.
      (k) Hajra, S.; Singha Roy, S.; Aziz, S. M.; Das, D. Org. Lett. 2017, 19, 4082.
      (l) Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. Green Chem. 2018, 20, 1297.
      (m) Hikawa, H.; Ichinose, R.; Kikkawa, S.; Azumaya, I. A. J. Org. Chem. 2018, 7, 416.
      (n) Wang, Z.; Cui, Y.-T.; Xu, Z.-B.; Qu, J. J. Org. Chem. 2008, 73, 2270.

    4. [4]

      (a) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816.
      (b) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275.

    5. [5]

      (a) Gouverneur, V.; Müller, K. In Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
      (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
      (c) Lectard, S.; Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal. 2010, 352, 2708.
      (d) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.
      (e) Politanskaya, L. V.; Selivanova, G. A.; Panteleeva, E. V.; Tretyakov, E. V.; Platonov, V. E.; Nikul'shin, P. V.; Vinogradov, A. S.; Zonov, Y. V.; Karpov, V. M.; Mezhenkova, T. V.; Vasilyev, A. V.; Koldobskii, A. B.; Shilova, O. S.; Morozova, S. M.; Burgart, Y. V.; Shchegolkov, E. V.; Saloutin, V. I.; Sokolov, V. B.; Aksinenko, A. Y.; Nenajdenko, V. G.; Moskalik, M. Y.; Astakhova, V. V.; Shainyan, B. A.; Tabolin, A. A.; Ioffe, S. L.; Muzalevskiy, V. M.; Balenkova, E. S.; Shastin, A. V.; Tyutyunov, A. A.; Boiko, V. E.; Igumnov, S. M.; Dilman, A. D.; Adonin, N. Y.; Bardin, V. V.; Masoud, S. M.; Vorobyeva, D. V.; Osipov, S. N.; Nosova, E. V.; Lipunova, G. N.; Charushin, V. N.; Prima, D. O.; Makarov, A. G.; Zibarev, A. V.; Trofimov, B. A.; Sobenina, L. N.; Belyaeva, K. V.; Sosnovskikh, V. Y.; Obydennov, D. L.; Usachev, S. A. Russ. Chem. Rev. 2019, 88, 425.
      (f) Ren, Z. W.; Ren, N.; Zhang, F. G.; Ma, J. A. Acta Chim. Sin. 2018, 76, 940(in Chinese).
      (任智雯, 任楠, 张发光, 马军安, 化学学报, 2018, 76, 940.)
      (g) Hu, J. J.; Huang, Y. G.; Xu, X. H.; Qin, F. L. Chin. J. Org. Chem. 2019, 39, 177(in Chinese).
      (胡娟娟, 黄焰根, 徐修华, 卿凤翎, 有机化学, 2019, 39, 177.) 

    6. [6]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    7. [7]

      (a) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
      (b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
      (c) Feng, Z.; Min, Q.-Q.; Xiao. Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 1669.
      (d) Zhou, D.; Huang, Z.; Yu, X.; Wang, Y.; Li, J.; Wang, W.; Xie, H. Org. Lett. 2015, 17, 5554.
      (e) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
      (f) Wang, L.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 15414.
      (g) Huang, Y.-Y.; Yang, X.; Chen, Z.; Verpoort, F.; Shibata, N. Chem.-Eur. J. 2015, 21, 8664.
      (h) Montesinos-Magraner, M.; Vila, C.; Blay, G.; Fernández, I.; Muñoz, M. C.; Pedro, J. R. Adv. Synth. Catal. 2015, 357, 3047.
      (i) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270.
      (j) Lou, H. Q.; Wang, Y.; Jin, E.; Lin, X. J. Org. Chem. 2016, 81, 2019.
      (k) Cook, A. M.; Wolf, C. Angew. Chem., Int. Ed. 2016, 55, 2929.
      (l) Zhang, Z. M.; Xu, B.; Xu, S.; Wu, H. H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.
      (m) Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44.
      (n) Duan, J.; Cheng, Y.; Cheng, J.; Li, R.; Li, P. Chem.-Eur. J. 2017, 23, 519.
      (o) Holmes, M.; Nguyen, K. D.; Schwartz, L. A.; Luong, T.; Krische, M. J. J. Am. Chem. Soc. 2017, 139, 8114.
      (p) Xie, E.; Rahman, A.; Lin, X. Org. Chem. Front. 2017, 4, 1407.
      (q) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.
      (r) Feng, Z.; Min, Q.-Q.; Fu, X.-P.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918.
      (s) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
      (t) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815(in Chinese).
      (卿凤翎, 有机化学, 2012, 32, 815.)
      (u) Zhang, F. G.; Peng, X.; Ma, J. A. Chin. J. Org. Chem. 2019, 39, 109(in Chinese).
      (张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)

    8. [8]

      (a) Gursoy, A.; Demirayak, S.; Capan, G.; Erol, K.; Vural, K. Eur. J. Med. Chem. 2000, 35, 359.
      (b) Rubtsov, A. E.; Makhmudov, R. R.; Kovylyaeva, N. V.; Prosyanik, N. I.; Bobrov, A. V.; Zalesov, V. V. Pharm. Chem. J. 2002, 36, 608.
      (c) Nishio, M.; Matsuda, M.; Ohyanagi, F.; Sato, Y.; Okumura, S.; Tabata, D.; Morikawa, A.; Nakagawa, K.; Horai, T. Lung Cancer 2005, 49, 245.
      (d) Bondock, S.; Rabie, R.; Etman, H. A.; Fadda, A. A. Eur. J. Med. Chem. 2008, 43, 2122.
      (e) Rostom, S. A.; el-Ashmawy, I. M.; Abd el Razik, H. A.; Badr, M. H.; Ashour, H. M. Bioorg. Med. Chem. 2009, 17, 882.
      (f) Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S. A. Eur. J. Med. Chem. 2010, 45, 4726.
      (g) Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. Chem Rev. 2011, 111, 6984.
      (h) Li, J.-H.; Du, D.-M. Org. Biomol. Chem. 2013, 11, 6215.
      (i) Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. New J. Chem. 2017, 41, 16.
      (j) Liu, S.; Bao, X.; Wang, B. Chem. Commun. 2018, 54, 11515.

    9. [9]

      (a) Jung, Y. S.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
      (b) Thomas, L. L.; Tirado-Rives, J.; Jorgensen, W. L. J. Am. Chem. Soc. 2010, 132, 3097.
      (c) Manna, A.; Kumar, A. J. Phys. Chem. A 2013, 117, 2446.
      (d) Sela, T.; Vigalok, A. Org. Lett. 2014, 16, 1964.

    10. [10]

      (a) Kelly, C. B.; Mercadante, M. A.; Hamlin, T. A.; Fletcher, M. H.; Leadbeater, N. E. J. Org. Chem. 2012, 77, 8131.
      (b) Martinelli, E.; Vicini, A. C.; Mancinelli, M.; Mazzanti, A.; Zani, P.; Bernardi, L.; Fochi, M. Chem. Commun. 2015, 51, 658.

    11. [11]

      (a) Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Adv. Synth. Catal. 2014, 356, 2330.
      (b) Zhu, Y.-F.; Wei, B.-L.; Wei, J.-J.; Wang, W.-Q.; Song, W.-B.; Xuan, L.-J. Tetrahedron Lett. 2019, 60, 1202.
      (c) Stefane B.; Polanc S. Tetrahedron 2007, 63, 10902.
      (d) MacLean, M. A.; Diez-Cecilia, E.; Lavery, C. B.; Reed, M. A.; Wang, Y. F.; Weaver, D. F.; Stradiotto, M. Bioorg. Med. Chem. Lett. 2016, 26, 100.
      (e) Nishi, H.; Watanabe, T.; Yuki, S.; Morinaka, Y.; Iseki, K.; Sakurai, H. EP 208874, 1987.

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    3. [3]

      Zhenguo ZhangLanyang LiXinlong ZongYongheng LvShuanglei LiuLiang JiXuefei ZhaoZhenhua JiaTeck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504

    4. [4]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    5. [5]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    6. [6]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    7. [7]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    8. [8]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    9. [9]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    12. [12]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    13. [13]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    14. [14]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    15. [15]

      Yu-Chen FangJia-He ChenMi-Zhuan LiHui-Min LiMei BaiYong-Zheng ChenZi-Wei GaoWen-Yong Han . Forging of silaoxycarbocyclics by interrupted Catellani reaction. Chinese Chemical Letters, 2025, 36(7): 110474-. doi: 10.1016/j.cclet.2024.110474

    16. [16]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    19. [19]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(10)
  • Abstract views(1187)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return