Recent Progress in Transition Metal Catalyzed Sulfonamidation of Aromatic Compounds
- Corresponding author: Ouyang Banlai, blouyang@qq.com
Citation:
Ouyang Banlai, Zheng Yanxia, Xia Kejian, Xu Xiaoling, Wang Yi. Recent Progress in Transition Metal Catalyzed Sulfonamidation of Aromatic Compounds[J]. Chinese Journal of Organic Chemistry,
;2020, 40(5): 1188-1205.
doi:
10.6023/cjoc201910002
(a) Skipper, P. L.; Kim, M. Y.; Sun, H. L.; Wogan, G. N.; Tannenbaum, S. R. Carcinogenesis 2010, 31, 50.
(b) Snodin, D. J. Org. Process Res. Dev. 2010, 14, 960.
Yasuhara, A.; Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.
doi: 10.1248/cpb.47.809
Fang, S.; Lü, M.; Long, Y.; Yang, D. Chin. J. Org. Chem. 2011, 31, 1573(in Chinese).
Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron 1996, 52, 7525.
doi: 10.1016/0040-4020(96)00266-9
(a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101.
(b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373.
doi: 10.1021/ol035655u
Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.
doi: 10.1021/ja0717414
Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 16720.
doi: 10.1021/ja9044357
Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Org. Lett. 2011, 13, 2564.
doi: 10.1021/ol200660s
Laffoon, S. D.; Chan, V. S.; Fickes, M. G.; Kotecki, B. J.; Ickes, A.; Henle, J.; Napolitano, J. G.; Franczyk, T. S.; Dunn, T. B.; Barnes, D. M.; Haight, A. R.; Henry, R. F.; Shekhar, S. ACS Catal. 2019, 9, 11691.
doi: 10.1021/acscatal.9b03012
He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3385.
doi: 10.1016/S0040-4039(03)00569-0
Tan, B. Y.-H.; Teo, Y.-C.; Seow, A.-H. Eur. J. Org. Chem. 2014, 2014, 1541.
doi: 10.1002/ejoc.201301561
Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46, 7295.
doi: 10.1016/j.tetlet.2005.08.149
Baffoe, J.; Hoe, M. Y.; Toure, B. B. Org. Lett. 2010, 12, 1532.
doi: 10.1021/ol100263r
Wang, X.; Guram, A.; Ronk, M.; Milne, J. E.; Tedrow, J. S.; Faul, M. M. Tetrahedron Lett. 2012, 53, 7.
doi: 10.1016/j.tetlet.2011.10.113
Han, X. Tetrahedron Lett. 2010, 51, 360.
doi: 10.1016/j.tetlet.2009.11.037
Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2018, 57, 3488.
doi: 10.1002/anie.201800699
For recent examples, see: (a) Jiao, J.-W.; Bi, H.-Y.; Zou, P.-S.; Wang, Z.-X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2018, 360, 3254.
(b) Mo, X.-L.; Chen, C.-H.; Liang, C.; Mo, D.-L. Eur. J. Org. Chem. 2018, 2018, 150.
(c) Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules, S.; Watson, A. J. J. Am. Chem. Soc. 2017, 139, 4769.
(d) Shi, W.-M.; Liu, F.-P.; Wang, Z.-X.; Bi, H.-Y.; Liang, C.; Xu, L.-P.; Su, G.-F.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 2741.
(e) Chen, C. H.; Liu, Q. Q.; Ma, X. P.; Feng, Y.; Liang, C.; Pan, C. X.; Su, G. F.; Mo, D. L. J. Org. Chem. 2017, 82, 6417.
Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
doi: 10.1016/S0040-4039(98)00503-6
Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.
doi: 10.1016/S0040-4039(01)00510-X
Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan, M.; Xie, R.-G. Synlett 2004, 1095.
Pan, C.; Cheng, J.; Wu, H.; Ding, J.; Liu, M. Synth. Commun. 2009, 39, 2082.
doi: 10.1080/00397910802638495
Kantam, M. L.; Neelima, B.; Reddy, C. V.; Neeraja, V. J. Mol. Catal. A:Chem. 2006, 249, 201.
doi: 10.1016/j.molcata.2006.01.012
(a) Azarifar, D.; Soleimanei, F. RSC Adv. 2014, 4, 12119.
(b) Nasrollahzadeh, M.; Ehsani, A.; Maham, M. Synlett 2014, 25, 505.
Vantourout, J. C.; Li, L.; Bendito-Moll, E.; Chabbra, S.; Arrington, K.; Bode, B. E.; Isidro-Llobet, A.; Kowalski, J. A.; Nilson, M. G.; Wheelhouse, K. M. P.; Woodard, J. L.; Xie, S.; Leitch, D. C.; Watson, A. J. B. ACS Catal. 2018, 8, 9560.
doi: 10.1021/acscatal.8b03238
Moon, S. Y.; Nam, J.; Rathwell, K.; Kim, W. S. Org. Lett. 2014, 16, 338.
doi: 10.1021/ol403717f
Ouyang, B.; Liu, D.; Xia, K.; Zheng, Y.; Mei, H.; Qiu, G. Synlett 2018, 29, 111.
doi: 10.1055/s-0036-1590978
Ouyang, B.; Zheng, Y.; Liu, Y.; Liu, F.; Yao, J.; Peng, Y. Tetrahedron Lett. 2018, 59, 3694.
doi: 10.1016/j.tetlet.2018.09.001
(a) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
(b) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
doi: 10.1021/ja062856v
Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738.
doi: 10.1021/ol201416u
Xiao, B.; Gong, T. J.; Xu, J.; Liu, Z. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.
doi: 10.1021/ja108450m
Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
doi: 10.1021/ja061715q
John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158.
doi: 10.1021/jo200409h
Shang, M.; Sun, S. Z.; Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 3354.
doi: 10.1021/ja412880r
Lee, W. C.; Shen, Y.; Gutierrez, D. A.; Li, J. J. Org. Lett. 2016, 18, 2660.
doi: 10.1021/acs.orglett.6b01105
Song, C.; Wang, T.; Yu, T.; Cui, D. M.; Zhang, C. Org. Biomol. Chem. 2017, 15, 7212.
doi: 10.1039/C7OB01872J
Meyer, A. U.; Berger, A. L.; König, B. Chem. Commun. 2016, 52, 10918.
doi: 10.1039/C6CC06111G
Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2016, 22, 15669.
doi: 10.1002/chem.201604014
Gao, Y.; Chen, S.; Lu, W.; Gu, W.; Liu, P.; Sun, P. Org. Biomol. Chem. 2017, 15, 8102.
doi: 10.1039/C7OB02029E
Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951.
doi: 10.1021/ja00984a035
Díaz-Requejo, M. M.; Belderraín, T. S. R.; Nicasio, M. C.; Trofimenko, S.; Pérez J. P. J. Am. Chem. Soc. 2003, 125, 12078.
doi: 10.1021/ja037072l
Hamilton, C. W.; Laitar, D. S.; Sadighi, J. P. Chem. Commun. 2004, 1628.
He, L.; Chan, P. W.; Tsui, W. M.; Yu, W. Y.; Che, C. M. Org. Lett. 2004, 6, 2405.
doi: 10.1021/ol049232j
Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784.
doi: 10.1021/ja0627850
Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058.
doi: 10.1021/ja0724137
Zhao, H.; Shang, Y.; Su, W. Org. Lett. 2013, 15, 5106.
doi: 10.1021/ol4024776
Li, H.; Deng, H. Synthesis 2017, 49, 2711.
doi: 10.1055/s-0036-1588165
Dong, Y.; Sun, S.; Yu, J.-t.; Cheng, J. Tetrahedron Lett. 2019, 60, 1349.
doi: 10.1016/j.tetlet.2019.03.069
Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.
doi: 10.1021/ja303527m
Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492.
doi: 10.1021/ja411072a
Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.
doi: 10.1039/c2ob26767e
Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
doi: 10.1021/ja4033555
Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
doi: 10.1039/c2cs15323h
Wang, H.; Yu, Y.; Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279.
doi: 10.1021/jo500412w
Jia, X.; Han, J. J. Org. Chem. 2014, 79, 4180.
doi: 10.1021/jo500372d
Zhang, C.; Zhou, Y.; Deng, Z.; Chen, X.; Peng, Y. Eur. J. Org. Chem. 2015, 2015, 1735.
doi: 10.1002/ejoc.201403477
Lee, D.; Kim, Y.; Chang, S. J. Org. Chem. 2013, 78, 11102.
doi: 10.1021/jo4019683
Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
doi: 10.1021/om5005868
Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem.-Eur. J. 2014, 20, 12421.
doi: 10.1002/chem.201404151
Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770.
doi: 10.1021/ja5053768
Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.
doi: 10.1002/anie.201310544
Shin, K.; Chang, S. J. Org. Chem. 2014, 79, 12197.
doi: 10.1021/jo5018475
Hou, W.; Yang, Y.; Ai, W.; Wu, Y.; Wang, X.; Zhou, B.; Li, Y. Eur. J. Org. Chem. 2015, 2015, 395.
doi: 10.1002/ejoc.201403355
Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.
doi: 10.1002/chem.201500331
Pi, C.; Cui, X.; Wu, Y. J. Org. Chem. 2015, 80, 7333.
doi: 10.1021/acs.joc.5b01377
Kim, Y.; Park, J.; Chang, S. Org. Lett. 2016, 18, 1892.
doi: 10.1021/acs.orglett.6b00662
Xu, L.; Tan, L.; Ma, D. J. Org. Chem. 2016, 81, 10476.
doi: 10.1021/acs.joc.6b01856
Song, Z.; Antonchick, A. P. Org. Biomol. Chem. 2016, 14, 4804.
doi: 10.1039/C6OB00926C
Li, Y.; Feng, Y.; Xu, L.; Wang, L.; Cui, X. Org. Lett. 2016, 18, 4924.
doi: 10.1021/acs.orglett.6b02406
Zhang, Y. F.; Wu, B.; Shi, Z. J. Chem.-Eur. J. 2016, 22, 17808.
doi: 10.1002/chem.201603805
Mu, D.; Wang, X.; Chen, G.; He, G. J. Org. Chem. 2017, 82, 4497.
doi: 10.1021/acs.joc.7b00531
Das, D.; Samanta, R. Adv. Synth. Catal. 2018, 360, 379.
doi: 10.1002/adsc.201701244
Kim, J.; Kim, J.; Chang, S. Chem.-Eur. J. 2013, 19, 7328.
doi: 10.1002/chem.201301025
(a) Bhanuchandra, M.; Yadav, M. R.; Rit, R. K.; Rao Kuram, M.; Sahoo, A. K. Chem. Commun. 2013, 49, 5225.
(b) Zheng, Q. Z.; Liang, Y. F.; Qin, C.; Jiao, N. Chem. Commun. 2013, 49, 5654.
Thirunavukkarasu, V. S.; Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286.
doi: 10.1021/ol401321q
Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638.
doi: 10.1021/ol400411v
Barnes, D. M.; Shekhar, S.; Dunn, T. B.; Barkalow, J. H.; Chan, V. S.; Franczyk, T. S.; Haight, A. R.; Hengeveld, J. E.; Kolaczkowski, L.; Kotecki, B. J.; Liang, G.; Marek, J. C.; McLaughlin, M. A.; Montavon, D. K.; Napier, J. J. J. Org. Chem. 2019, 84, 4873.
doi: 10.1021/acs.joc.8b02690
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024