Citation: Huang Guobao, Chen Zhilin, Wei Xiansheng, Chen Yu, Li Xiuying, Zhong Hui, Tan Mingxiong. Recent Progress on the Construction and Function of Macrocyclic Compounds Containing Hydrogen Bond Donors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 614-624. doi: 10.6023/cjoc201909029 shu

Recent Progress on the Construction and Function of Macrocyclic Compounds Containing Hydrogen Bond Donors

  • Corresponding author: Zhong Hui, lxya8401@163.com Tan Mingxiong, tanmx00@163.com
  • Received Date: 18 September 2019
    Revised Date: 31 October 2019
    Available Online: 2 December 2019

    Fund Project: the Yulin Normal University Research Grant 201810606010the National Natural Science Foundation of China 21961042the Yulin Normal University Research Grant 2018YJKY36the Natural Science Foundation of Guangxi Province 2018GXNSFAA294064Project supported by the National Natural Science Foundation of China (No. 21961042), the Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA294064) and the Yulin Normal University Research Grant (Nos. 2018YJKY36, 201810606010)

Figures(14)

  • Because of the N-H group structure in the macrocyclic compound containing hydrogen bond Donors, it can provide additional intermolecular forces in the host-guest chemistry, and this character is widely used in the molecular recognition, self-assembly, supramolecular catalysis and other fields. The recent progress on the synthetic methods of macrocyclic compounds based on (thio) urea, amide and its molecular recognition in 2010~2019 are summarized. It is hoped that this review can be referred to synthesis and applications of this kind of macrocyclic compounds.
  • 加载中
    1. [1]

    2. [2]

      Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.  doi: 10.1021/ja01002a035

    3. [3]

      Huang, G.-B.; Jiang, W. Prog. Chem. 2015, 27, 744 (in Chinese).

    4. [4]

      (a) Zheng, B.; Wang, F.; Dong, S.-Y.; Huang, F.-H. Chem. Soc. Rev. 2012, 5, 1621.
      (b) Cheng, H.-B.; Zhang, H.-Y.; Liu, Y. J. Am. Chem. Soc. 2013, 135, 10190.

    5. [5]

      (a) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 10, 681.
      (b) Chen, Y.; Liu, Y. Chem. Soc. Rev. 2010, 39, 495.

    6. [6]

      (a) Guo, D.-S.; Wang, K.; Liu, Y. J. Inclusion Phenom. Macrocyclic Chem. 2008, 1-2, 1.
      (b) Guo, D.-S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907.

    7. [7]

      (a) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.
      (b) Cragg, P. J.; Sharma, K. Chem. Soc. Rev. 2012, 41, 597.
      (c) Ogoshi, T.; Yamagishi, T.-A. Eur. J. Org. Chem. 2013, 15, 2961.
      (d) Zhang, H.; Zhao, Y. Chem.-Eur. J. 2013, 19, 16862.
      (e) Wang, M.-X. Chem. Commun. 2008, 4541.
      (f) Guo, Q.-H.; Fu, Z.-D.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.
      (g) Wang, M.-X. Acc. Chem. Res. 2012, 45, 182.
      (h) Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Chem. Sci. 2015, 6, 197.
      (i) Tian, X. H.; Chen, C. F. Org. Lett. 2010, 12, 524.
      (j) Xue, M.; Chen, C. F. Org. Lett. 2009, 11, 5294.
      (k) Wang, J. H.; Feng, H. T.; Zheng, Y. S. Chem. Commun. 2014, 50, 11407.
      (l) Chun, Y.; Singh, N. J.; Hwang, I. C.; Lee, J. W.; Yu, S.-U.; Kim, K.-S. Nat. Commun. 2013, 4, 1797.
      (m) Lee, S.; Chen, C.-H.; Flood, A.-H. Nat. Chem. 2013, 5, 704.

    8. [8]

      Shimizu, L. S.; Smith, M. D.; Hughes, A. D.; Shimizu, K. D. Chem. Commun. 2001, 1592.

    9. [9]

      (a) Shimizu, L. S.; Hughes, A. D.; Smith, M. D.; Davis, M. J.; Zhang, P.; Loye zur, H.; Shimizu, K. D. J. Am. Chem. Soc. 2003, 125, 14972.
      (b) Yang, J.; Dewal, M. B.; Shimizu, L. S. J. Am. Chem. Soc. 2006, 128, 8122.
      (c) Yang, J.; Dewal, M. B.; Profeta, S.; Smith, M. D.; Li, Y.; Shimizu, L. S. J. Am. Chem. Soc. 2008, 130, 612.
      (d) Dewal, M. B.; Xu, Y.; Yang, J.; Mohammed, F.; Smith, M. D.; Shimizu, L. S. Chem. Commun. 2008, 3909.
      (e) Yang, J.; Dewal, M. B.; Sobransingh, D.; Smith, M. D.; Xu, Y.; Shimizu, L. S. J. Org. Chem. 2009, 74, 102.
      (f) Xu, Y.; Smith, M. D.; Krause, J.; Shimizu, L. S. J. Org. Chem. 2009, 74, 4874.
      (f) Roy, K.; Wang, C.; Smith, M.-D.; Pellechia, P.; Shimizu, L. S. J. Org. Chem. 2010, 75, 5453.

    10. [10]

      (a) Meshcheryakov, D.; Arnaud-Neu, F.; Böhmer, V.; Bolte, M.; Cavaleri, J.; Hubscher-Bruder, V.; Thondorf, I.; Weener, S. Org. Biomol. Chem. 2008, 6, 3244.
      (b) Meshcheryakov, D.; Böhmer, V.; Bolte, M.; Hubscher-Bruder, V.; Arnaud-Neu, F. Chem. Eur. J. 2009, 15, 4811.

    11. [11]

      Dawn, S.; Dewal, M. B.; Sobransingh, D.; Paderes, M. C.; Wibowo, A.; Smith, M.; Krause, J.; Pellechia, P.; Shimizu, L. S. J. Am. Chem. Soc. 2011, 133, 7025.  doi: 10.1021/ja110779h

    12. [12]

      Roy, K.; Wang, C.; Smith, M. D.; Dewal, M. B.; Wibowo, A. C.; Brown, J. C.; Ma, S.; Shimizu, L. S. Chem. Commun. 2011, 47, 277.  doi: 10.1039/C0CC01952F

    13. [13]

      Geer, M. F.; Smith, M. D.; Shimizu, L. S. CrystEngComm 2011, 13, 3665.  doi: 10.1039/c1ce05207a

    14. [14]

      Roy, K.; Wibowo, A.; Pellechia, P.; Ma, S.; Geer, M.; Shimizu, L. S. Chem. Mater. 2012, 24, 4773  doi: 10.1021/cm302658q

    15. [15]

      Geer, M. F.; Walla, M.; Solntsev, K.; Strassert, C.; Shimizu, L. S. J. Org. Chem. 2013, 78, 5568.  doi: 10.1021/jo400685u

    16. [16]

      Xiao, T.; Li, S.; Zhang, X.; Lin, C.; Wang, L. Y. Chin. J. Chem. 2013, 31, 627.  doi: 10.1002/cjoc.201300246

    17. [17]

      Zhang, D. S.; Chen, J. P.; Zeng, Y.; Yu, T. J.; Li, Y. Chin. J. Org. Chem. 2013, 33, 110 (in Chinese).
       

    18. [18]

      Kretschemer, C.; Dittmann, G.; Beck, J. Beilstein J. Org. Chem. 2014, 10, 1834.  doi: 10.3762/bjoc.10.193

    19. [19]

      Huang, G. B.; He, Z.; Cai, C.; Pan, F.; Yang, D.; Rissanen, K.; Jiang, W. Chem. Commun. 2015, 51, 15490.  doi: 10.1039/C5CC06768E

    20. [20]

      Huang, G. B.; Valkonen, A.; Rissanen, K.; Jiang, W. Chem. Commun. 2016, 52, 9078.  doi: 10.1039/C6CC00349D

    21. [21]

      Huang, G. B.; Liu, V.; Valkonen, A.; Yao, H.; Rissanen, K.; Jiang, W. Chin. Chem. Lett. 2018, 29, 91.  doi: 10.1016/j.cclet.2017.07.005

    22. [22]

      (a) Kondo, S.; Sonoda, H.; Katsu, T.; Unno, M. Sens. Actuators, B 2011, 160, 684.
      (b) Satake, A.; Ishizawa, Y.; Katagiri, H.; Kondo, S. J. Org. Chem. 2016, 81, 9848.

    23. [23]

      Osawa, K.; Tagaya, H.; Kondo, S. J. Org. Chem. 2019, 84, 6623.  doi: 10.1021/acs.joc.9b00073

    24. [24]

      Tromans, R.; Carter, T.; Chabanne, T.; Crump, M.; Li, H.; Matlock, J.; Orchard, M.; Davis, A. P. Nat. Chem. 2019, 11, 52.

    25. [25]

      (a) Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732.
      (b) Sharma, S. K.; Upreti, S.; Gupta, R. Eur. J. Inorg. Chem. 2007, 3247.
      (c) Gasparrini, F.; Pierini, M.; Villani, C.; Filippi, A.; Speranza, M. J. Am. Chem. Soc. 2008, 130, 522.
      (d) Shang, X. F.; Lin, H.; Cai, Z. S.; Lin, H. K. J. Heterocycl. Chem. 2008, 45, 1329.
      (d) Ghorai, A.; Gayen, A.; Kulsi, G.; Padmanaban, E.; Laskar, A.; Achari, B.; Mukhopadhyay, C.; Chattopadhyay, P. Org. Lett. 2011, 13, 5512.

    26. [26]

      (a) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.; Walker, D. B. Angew. Chem. 2004, 116, 4004.
      (b) Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.
      (c) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons, S.; Walker, D. B. J. Am. Chem. Soc. 2005, 137, 12612.
      (d) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Perret-Aebi, L. E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. Chem. Soc. 2007, 129, 15085.
      (e) Barrell, M. J.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 8036.
      (f) Altieri, A.; Aucagne, V.; Carrillo, R.; Clarkson, G.; D'Souza, D. M.; Dunnet, J.; Leigh, D. A.; Mullen, K. M. Chem. Sci. 2011, 2, 1922.

    27. [27]

      (a) Klein, E.; Ferrand, Y.; Auty, E. K.; Davis, A. P. Chem. Commun. 2007, 2390.
      (b) Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619.
      (c) Klein, E.; Ferrand, Y.; Barwell, N. P.; Davis, A. P. Angew. Chem., Int. Ed. 2008, 48, 2693.
      (d) Challinor, L.; Klein, E.; Davis, A. P. Synlett 2008, 14, 2137.

    28. [28]

      Qin, B.; Chen, X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.; Yan, Y.; Pan, S. Y.; Ong, W. Q.; Ren, C. L.; Su, H. B.; Zeng, H. Q. Org. Lett. 2008, 10, 5127.  doi: 10.1021/ol801980h

    29. [29]

      Qin, B.; Ren, C.; Ye, R.; Sun, C.; Chalid, K.; Chen, X.; Li, Z.; Xue, F.; Su, H.; Chass, G.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132, 9564.  doi: 10.1021/ja1035804

    30. [30]

      (a) Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.; Clements, A.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am. Chem. Soc. 2008, 130, 15784.
      (b) Wang, X.; Liu, R.; Sathyamoorthy, B.; Yamato, K.; Liang, G.; Shen, L.; Ma, S.; Sukumaran, D.; Szyperski, T.; Fang, W.; He, L.; Chen, X.; Gong, B. J. Am. Chem. Soc. 2015, 137, 5879.

    31. [31]

      Yang, Y.; Feng, W.; Hu, J.; Zou, S.; Gao, R.; Yamato, K.; Kline, M.; Cai, Z.; Gao, Y.; Wang, Y.; Li, Y.; Yang, Y.; Yuan, L.; Zeng, X.; Gong, B. J. Am. Chem. Soc. 2011, 133, 18590.  doi: 10.1021/ja208548b

    32. [32]

      (a) Ferrand, Y.; Klein, E.; Barwell, N. P.; Crump, M. P.; J. Vicent, J. C.; Boons, G.-J.; Ingale, S.; Davis, A. P. Angew. Chem., Int. Ed. 2009, 49, 1775.
      (b) Davis, A. P. Org. Biomol. Chem. 2009, 7, 3629.
      (c) Barwell, N. P.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2009, 48, 7363.

    33. [33]

      Barwell, N. P.; Davis, A. P. J. Org. Chem. 2011, 76, 6548.  doi: 10.1021/jo200755z

    34. [34]

      (a) Sookcharoenpinyo, B.; Klein, E.; Ferrand, Y.; Walker, B.; Brotherhood, P.; Ke, C.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed. 2012, 51, 4586.
      (b) Ke, C.; Destecroix, H.; Crump, M. P.; Davis, A. P. Nat. Chem. 2012, 4, 718.
      (c) Howgego, J.; Butts, C.; Crump, M. P.; Davis, A. P. Chem. Commun. 2013, 49, 3110.
      (d) Destecroix, H.; Renney, C.; Mooibroek, T.; Carter, T.; Stewart, P.; Crump, M. P.; Davis, A. P. Angew. Chem. Int. Ed. 2015, 54, 2057.
      (e) Rios, P.; Carter, T.; Mooibroek, T.; Crump, M. P.; Lisbjerg, M.; Pittelkow, M.; Supekar, N.; Boons, G.; Davis, A. P. Angew. Chem., Int. Ed. 2016, 55, 3387.
      (f) Carter, T.; Mooibroek, T.; Stewart, P.; Crump, M. P.; Galan, M.; Davis, A. P. Angew. Chem., Int. Ed. 2016, 55, 9311.
      (g) Mandal, P.; Kauffmann, B.; Destecroix, H.; Ferrand, Y.; Davis, A. P.; Huc, I. Chem. Commun. 2016, 52, 9355.
      (h) Rios, P.; Mooibroek, T.; Carter, T.; Willams, C.; Wilson, M.; Crump, M. P.; Davis, A. P. Chem. Sci. 2017, 8, 4056.

    35. [35]

      Chen, M. J.; Han, S. J.; Jiang, L. S.; Zhou, S. G.; Jiang, F.; Xu, Z. K.; Liang, J. D.; Zhang, S. H. Chem. Commun. 2010, 46, 3932.  doi: 10.1039/c003118f

    36. [36]

      Yang, D. K.; Zeng, Z. J.; Chen, M. J.; Pan, S. W.; Yang, Y.; Li, M.; Lei, C. Y.; Jiang. L. S. Acta Chim. Sinica 2012, 74, 1385 (in Chinese).

    37. [37]

      Wang, D.; You, L.; Wang, J.; Wang, H.; Zhang, D.; Li, Z. T. Tetrahedron Lett. 2013, 54, 6967.  doi: 10.1016/j.tetlet.2013.10.064

    38. [38]

      Chen, Y.; Wang, L.; Zhang, L.; Zhu, J.; Wang, H.; Zhang, D.; Li, Z. T. Tetrahedron 2014, 70, 5483.  doi: 10.1016/j.tet.2014.06.113

    39. [39]

      Huang, G.; Wang, S.; Ke, H.; Yang, L.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550  doi: 10.1021/jacs.6b09472

    40. [40]

      Martí-Centelles, V.; Burguete, M. I.; Luis, S. J. Org. Chem. 2016, 81, 2143.  doi: 10.1021/acs.joc.5b02676

    41. [41]

      Mao, L.; Pan, W.; Fu, Y.; Chen, L.; Xu, M.; Ren, Y.; Feng, W.; Yuan, L. Org. Lett. 2017, 19, 18.  doi: 10.1021/acs.orglett.6b03125

    42. [42]

      Wang, F. F.; Ou, M.; Deng, Y. X.; Ran, X.; Zhang, Q. L.; Zhu, B. X. Chin. J. Org. Chem. 2014, 34, 334 (in Chinese).
       

    43. [43]

      Wei, X. K.; Gu, J. C.; Liu, X. L.; Huang, C.; Zhu, B. X. Chin. J. Org. Chem. 2018, 38, 3386 (in Chinese).
       

    44. [44]

      (a) Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1209.
      (b) Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

    45. [45]

      María, D.; Claramunt, R.; Torralba, M.; Torres, M.; Elguero, J. Tetrahedron Lett. 2019, 60, 1206.  doi: 10.1016/j.tetlet.2019.03.066

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    9. [9]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

Metrics
  • PDF Downloads(43)
  • Abstract views(3573)
  • HTML views(1098)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return