

利用自由基引发的1, 2-炔基迁移实现非活性烯烃的炔膦酰化
-
关键词:
- 1, 4-烯炔衍生物
- / 炔膦酰化反应
- / γ-酮膦氧化物
- / 炔基迁移
- / 自由基化学
English
Alkynylphosphonation of Unactivated Olefins via Radical-Triggered 1, 2-Alkynyl Migration
-
Key words:
- 1, 4-enynes
- / alkynylphosphonation
- / γ-ketophosphine oxides
- / alkynyl migration
- / radical chemistry
-
1. Introduction
As highly important and valuable feedstocks, alkenes have been widely utilized for myriad challenging and intriguing transformations in synthetic science due to their unique reactivity profile.[1] Specifically, radical-induced direct 1, 2-difunctionalization of alkenes has emerged as a significant synthetic tool for the collection of highly functionalized molecules by incorporating two functional groups across the C=C π system.[2] A extensive survey of literature reports revealed that the vast majority of well-developed methods generally depend on activated alkenes, due to its nascent alkyl radical needs to be stabilized by adjacent functional groups (e.g. aryl, carbonyl, heteroatom) via p-π conjugate effect (Scheme 1, path i).[3] However, radical induced difunctionalization of unactivated alkenes remains elusive. On the other hand, the radical functionality migration enables to reconstruct the molecular structures and assemble significant compounds which are not available through other methods.[4] Such reaction category provides a new synthetic protocol for radical difunctionalization of unactivated alkenes.[5] Numerous state-of-the-art works for intramolecular functionality migration strategies, such as arylation, [6] cyanation, [7] imidization, [8] formylation, [9] heteroarylation[10] and alkenylation[11] have been reported (Scheme 1, pathway iii). Very recently, Zhu group[12] pioneered the intramolecular distal alkynyl migration for alkynylation of unactivated olefins (Scheme 1, path ii). However, these cases were restricted to distal 1, 4- or 1, 5-alkynyl migration. To achieve radical 1, 2-alkynyl migration, an isopropenyl group was adopted to replace the vinyl moiety in the enyne substrates to prepare a class of new 1, 4-enynes, and it found that these substrates underwent radical 3-exo-dig cyclization and C—C σ bond cleavage to complete their 1, 2-alkynyl migration triggered by C-centered or H radical species (Scheme 1, path iii).[13] To further investigate the generality of radical 1, 2-alkynyl migration of 1, 4-enynes and expand the family of α-alkynyl ketones, we attempted to utilize diarylphosphine oxides as P-centered radical precursors to trigger 1, 2-alkynyl migration of 1, 4-enynes to construct γ-ketophosphine oxides due to such compounds have been found to exhibit wide-spectrum biological activities and unique properties.[14] Herein, we describe a silver- mediated alkynylphosphonation of 1, 4-enynes with diaryl- phosphine oxides, in which a series of α-alkynyl γ-keto- phosphine oxides were obtained through a sequential P- centered radical addition, 3-exo-dig cyclization and 1, 2- alkynyl migration cascade (Scheme 1, path iv).[15]
Scheme 1
2. Results and discussion
Our initial investigations focused on identifying the optimized conditions by selecting the preformed 1, 4-enyne 1a and diphenylphosphine oxide 2a as the model substrates. The reaction of 1a with 2a was conducted in the presence of AgNO3 (2.0 equiv.) in a mixed solvent of CH3CN and H2O at 80 ℃, and the expected migration product 3a was generated, albeit with a low 17% yield (Table 1, Entry 1). Subsequently, several silver salts such as AgOAc, Ag2CO3 and Ag2O were screened, indicating that AgOAc substantially suppressed the formation of 3a (Entry 2) while the latter two could accelerate this radical transformation (Entries 3, 4) and the last one showed the best oxidation ability, offering in 39% yield (Entr y 4). The following screening of other aprotic solvents, such as 1, 2-dichloroethane (DCE), methanol, N, N-dimethylforma- mide (DMF) and 1, 4-dioxane revealed that all these solvents have no positive effect on the yield of 3a as compared with CH3CN (Entries 5~8 vs Entry 4). Adjusting the amount of Ag2O to 1.0 equiv. was not beneficial for this transformation with observation of unconsumed starting materials (Entry 9). An increase of the amount of Ag2O to 3.0 equiv. led to a higher yield of product 3a (53%, Entry 10). The yield of 3a levelled off when the loading of Ag2O was further increased (Entry 11). Next, we attempted to change reaction temperatures to assess the effect on the efficiency of the reaction. After careful investigations, the reaction temperature was found to have remarkable influence on this radical transformation (Entries 12, 13). Elevating reaction temperature from 80 ℃ to 100 ℃ facilitated the reaction process, and an almost full consumption of the starting material was observed at 100 ℃, giving 64% yield. Further raising the temperature to 120 ℃ did not improve the conversion of 1a into 3a (Entry 14). Without H2O, the lower conversion was observed (Entry 15).
Table 1
Entry Ag salt (equiv.) Solvent t/℃ Yieldb/% 1 AgNO3 (2.0) CH3CN/H2O 80 17 2 AgOAc (2.0) CH3CN/H2O 80 6 3 Ag2CO3 (2.0) CH3CN/H2O 80 26 4 Ag2O (2.0) CH3CN/H2O 80 39 5 Ag2O (2.0) DCE/H2O 80 Trace 6 Ag2O (2.0) MeOH/H2O 80 20 7 Ag2O (2.0) DMF/H2O 80 20 8 Ag2O (2.0) 1, 4-Dioxane/H2O 80 17 9 Ag2O (1.0) CH3CN/H2O 80 18 10 Ag2O (3.0) CH3CN/H2O 80 53 11 Ag2O (4.0) CH3CN/H2O 80 53 12 Ag2O (3.0) CH3CN/H2O 90 57 13 Ag2O (3.0) CH3CN/H2O 100 64 14 Ag2O (3.0) CH3CN/H2O 110 63 15 Ag2O (3.0) CH3CN 100 45 a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), silver salt, organic solvent (3.0 mL), H2O (0.5 mL). b Isolated yield based on 1a. With the optimized reaction conditions in hand, we then set out to study the generality of the migration reaction by examining 1, 4-enyne and diarylphosphine oxide components (Table 2). 1, 4-Enynes 1 with diverse substituents on the arylalkynyl moiety (R) were first investigated in combination with diphenylphosphine oxide (2a) under the standard conditions. Both electron-poor and electron-rich groups at different positions were accommodated well, accessing the corresponding products 3b~3n in 40%~68% yields. The different substituents including fluoro, chloro), bromo, methyl, ethyl, tert-butyl, and methoxy could be successfully engaged in the current migration reaction. Among them, a sterically encumbered 2-chloro- phenyl and 2-methylphenyl analogues were appropriate reaction partner, enabling the radical relay alkynyl migration process to provide the corresponding products 3e and 3h in 52% and 50% yields, respectively. Moreover, 2-thienyl analogue 1l was proven to be favorable for this alkynyl migration. Liner n-propyl group (1n) exhibited good compatibility, as evident by the corresponding product 3n was offered in 40% yield. Next, the possible variation in the R1 substituents attached by a quaternary carbon of 1, 4-enynes was examined. Diverse substituents such as aryl and heteroaryl can all tolerate under the redox-neutral conditions, delivering products 3o~3w in acceptable yields. All tested aryl groups, relative to tertiary alcohol moiety, with varied functionalities and substitution patterns underwent this radical alkynyl migration process, giving access to the corresponding products 3o~3w. Various functional groups, such as chloro, fluoro, methyl, ethyl, tert-butyl, methoxy and trifluoromethyl, all worked well. Alternatively, n-hexyl 1, 4-enyne 1x was readily converted into product 3x in 47% yield. Next, bis(3, 5-dimethyl- phenyl)phosphine oxide (2b) was used as a P-centered radical precursor, which could participate in the P-centered radical relay approach to furnish the corresponding γ-keto- phosphine oxide 3y, albeit with a low yield (Table 2).
Table 2
To gain more insight into this reaction, radical inhibitors such as 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) and butylhydroxytoluene (BHT) were subjected to the reaction system under the standard conditions (Scheme 3a), and the reaction process was completely suppressed without observation of product 3a. These results indicated that this transformation may include a P-centered radical process (Scheme 2a). The removal of the methyl from the terminal olefin unit led to a complex reaction system under the standard conditions, showing that the methyl group linked to the olefin unit was crucial for this transformation (Scheme 2b).
Scheme 2
On the basis of the above results and previous reports, [16] a reasonable mechanism is depicted in Scheme 3. Initially, diphenylphosphine oxide is oxidized by Ag(I) to form radical intermediate A, together with Ag(0). The addition of radical A to the terminal alkene unit of 1, 4-enynes 1 provides radical intermediate B, followed by 3-exo-dig cyclization ("anti-Baldwin" rules) and alkynyl migration (the homolysis of C—C bond) to produce hydroxyalkyl radical D. Finally, a single electron oxidation of the intermediate D leads to the carbon cation E, which releases a proton to give the final products 3.
3. Conclusions
In summary, starting from easily preformed 1, 4-enynes and diarylphosphine oxides, a silver-mediated alkynyl- phosphonation of unactivated olefins have been developed for the synthesis of a wide range of γ-ketophosphine oxides through radical intramolecular 1, 2-alkynyl migration of 1, 4-enynes. The reaction proceeded with sequential P-centered radical addition to vinyl unit, 3-exo-dig cyclization and 1, 2-alkynyl migration, resulting in the multiple bond-forming events including C—P and C—C bonds in a one-pot manner. Further application of this attractive radical 1, 2-alkynyl migration strategy will be conducted in due course.
Scheme 3
4. Experimental section
4.1 General information
1H NMR (13C NMR, 31P NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl3 (DMSO-d6). HRMS (ESI) was determined by using a microTOF-QII HRMS/MS instrument (BRUKER).
4.1.1 General procedure for the synthesis of compounds 3a~3y
In a Schlenk tube, 1, 4-enynes, (0.2 mmol), diphenylphosphine oxide (0.2 mmol), Ag2O (0.6 mmol), acetonitrile (3.0 mL), and H2O (0.5 mL) were continuously added. Then the tube was sealed with a Teflon lined cap and stirred at 100 ℃ for 10 h until complete consumption of starting material as monitored by thin-layer chromatography (TLC, petroleum ether/ethyl acetate, V:V=1:1) analysis. Then the solvent was evaporated under reduced pressure, and the crude products were purified by flash column chromatography on silica gel with petroleum ether/EtOAc (V:V=5:1) as the eluent to give the desired products 3a~3y.
2-[(Diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-2-methyl-4-phenylbut-3-yn-1-one (3a): Yellow oil. 59.7 mg, 64% yield. 1H NMR (400 MHz, CDCl3) δ: 8.36~8.30 (m, 2H), 7.88~7.78 (m, 4H), 7.48~7.41 (m, 6H), 7.28 (d, J=7.6 Hz, 1H), 7.24~7.18 (m, 2H), 7.15~7.10 (m, 2H), 6.98 (d, J=7.2 Hz, 2H), 3.49~3.41 (m, 1H), 2.98~2.88 (m, 1H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.5 (d, 7JC—P=6.7 Hz), 165.2 (d, 1JC—P=126.4 Hz), 132.6 (d, 6JC—F=9.0 Hz), 131.4, 131.3, 131.0 (d, 4JC—P=9.3 Hz), 130.7 (d, 5JC—P=9.1 Hz), 128.6 (d, 11JC—P=5.0 Hz), 128.5 (d, 10JC—P=5, 2 Hz), 128.3, 127.9, 122.3, 115.0 (d, 3JC—F=21.6 Hz), 90.5 (d, 9JC—P=6.2 Hz), 88.4, 44.2 (d, 12JC—P=3.4 Hz), 39.0 (d, 2JC—P=71.8 Hz), 28.7 (d, 8JC—P=6.3 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.53; IR (KBr) ν: 3056, 2927, 2197, 1685, 1598, 1437, 1232, 756, 692 cm-1; HRMS (ESI) calcd for C30H24FO2PNa [M+Na]+ 489.1396, found 489.1409.
2-[(Diphenylphosphoryl)methyl]-1, 4-bis(4-fluorophen-yl)-2-methylbut-3-yn-1-one (3b): Yellow oil. 65.9 mg, 68% yield. 1H NMR (400 MHz, CDCl3) δ: 8.35~8.28 (m, 2H), 7.89~7.77 (m, 4H), 7.50~7.39 (m, 6H), 7.16~7.10 (m, 2H), 6.96~6.87 (m, 4H), 3.50~3.42 (m, 1H), 2.94~2.85 (m, 1H), 1.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 196.6 (d, 6JC—P=8.0 Hz), 163.1, 132.5, 131.4, 131.1 (d, 4JC—P=9.2 Hz), 130.7 (d, 5JC—P=9.1 Hz), 128.5 (d, 3JC—P=11.7 Hz), 128.2 (d, 2JC—F=22.3 Hz), 127.8, 127.3, 122.6, 113.2, 91.0 (d, 7JC—P=6.0 Hz), 88.1, 55.5, 43.9 (d, 9JC—P=3.4 Hz), 38.6 (d, 1JC—P=72.2 Hz), 28.4 (d, 8JC—P=5.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.83; IR (KBr) ν: 3047, 2931, 2166, 1684, 1588, 1497, 1183, 844, 695 cm-1; HRMS (ESI) calcd for C30H23F2O2PNa [M+Na]+ 507.1301, found 507.1315.
2-[(Diphenylphosphoryl)methyl]-1-(3-fluorophenyl)-4-(4-fluorophenyl)-2-methylbut-3-yn-1-one (3c): Yellow oil. 59.1 mg, 61% yield. 1H NMR (400 MHz, CDCl3) δ: 8.35~8.28 (m, 2H), 7.89~7.77 (m, 4H), 7.50~7.39 (m, 6H), 7.16~7.10 (m, 2H), 6.96~6.87 (m, 4H), 3.50~3.42 (m, 1H), 2.94~2.85 (m, 1H), 1.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.4 (d, 10JC—P=6.7 Hz), 165.2 (d, 1JC—F=252.8 Hz), 162.5 (d, 2JC—F=248.0 Hz), 133.2 (d, 6JC—P=9.4 Hz), 132.5 (d, 9JC—P=9.1 Hz), 131.4 (d, 17JC—P=3.1 Hz), 131.0 (d, 7JC—F=9.2 Hz), 130.7 (d, 8JC—F=9.1 Hz), 128.6 (d, 13JC—P=6.2 Hz), 128.5 (d, 11JC—P=6.4 Hz), 118.4 (d, 16JC—F=3.5 Hz), 115.2 (d, 4JC—F=13.4 Hz), 115.0 (d, 5JC—F=13.1 Hz), 90.2 (d, 14JC—P=4.6 Hz), 87.42, 44.1 (d, 14JC—P=3.5 Hz), 38.9 (d, 3JC—P=72.0 Hz), 28.7 (d, 12JC—P=6.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.53; IR (KBr) ν: 3027, 2927, 2161, 1683, 1598, 1504, 1183, 844, 695 cm-1; HRMS (ESI) calcd for C30H23F2O2PNa [M+Na]+ 507.1301, found 507.1318.
4-(3-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-1-(4-fluorophenyl)-2-methylbut-3-yn-1-on (3d): Yellow oil. 58.1 mg, 58% yield. 1H NMR (400 MHz, CDCl3) δ: 8.31~8.20 (m, 2H), 7.83~7.73 (m, 4H), 7.47~7.35 (m, 6H), 7.22~7.17 (m, 1H), 7.12~7.05 (m, 3H), 6.86~6.80 (m, 1H), 6.77~6.66 (m, 1H), 3.47~3.38 (m, 1H), 2.87~2.79 (m, 1H), 1.92 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.3 (d, 7JC—P=6.9 Hz), 166.3 (d, 1JC—F=253.2 Hz), 133.8, 132.5 (d, 5JC—F=9.1 Hz), 131.6 (d, 14JC—F=3.3 Hz), 131.5 (d, 12JC—P=4.3 Hz), 131.3, 131.0 (d, 4JC—P=9.4 Hz), 130.7 (d, 6JC—P=9.1 Hz), 129.4, 129.2, 128.7 (d, 11JC—P=4.5 Hz), 128.6 (d, 10JC—P=4.8 Hz), 124.0, 115.1 (d, 3JC—F=21.7 Hz), 91.8 (d, 9JC—P=5.9 Hz), 87.2, 44.2 (d, 13JC—P=3.7 Hz), 38.9 (d, 1JC—P=72.0 Hz), 28.8 (d, 8JC—P=6.7 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.64; IR (KBr) ν: 3057, 2928, 2167, 1686, 1598, 1504, 1189, 844, 695 cm-1; HRMS (ESI) calcd for C30H23ClFO2PNa [M+Na]+ 523.1006, found 523.1021.
4-(2-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-1-(4-fluorophenyl)-2-methylbut-3-yn-1-one (3e): Yellow oil. 52.1 mg, 52% yield. 1H NMR (400 MHz, CDCl3) δ: 8.37~8.29 (m, 2H), 7.82~7.71 (m, 4H), 7.40~7.32 (m, 6H), 7.23 (d, J=8.0 Hz, 1H), 7.15~7.10 (m, 1H), 7.06~6.98 (m, 3H), 6.83~6.77 (m, 1H), 3.46~3.37 (m, 1H), 2.96~2.87 (m, 1H), 1.93 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 196.9 (d, 8JC—P=6.1 Hz), 165.2 (d, 1JC—F=252.8 Hz), 135.7, 133.5, 132.8 (d, 6JC—F=9.0 Hz), 131.4 (d, 13JC—F=2.5 Hz), 131.0 (d, 4JC—P=9.4 Hz), 130.7 (d, 5JC—P=9.2 Hz), 129.4, 128.9, 128.6 (d, 11JC—P=4.7 Hz), 128.5 (d, 10JC—P=4.8 Hz), 126.08, 122.24, 115.0 (d, 3JC—F=21.7Hz), 95.6 (d, 9JC—P=6.0 Hz), 85.23, 44.4 (d, 12JC—P=3.5 Hz), 39.2 (d, 2JC—P=71.3 Hz), 28.7 (d, 7JC—P=6.5 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.39; IR (KBr) ν: 3056, 2928, 2264, 1683, 1597, 1485, 1190, 824, 695 cm-1; HRMS (ESI) calcd for C30H23ClFO2PNa [M+Na]+ 523.1006, found 523.1018.
4-(4-Bromophenyl)-2-[(diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-2-methylbut-3-yn-1-one (3f): Yellow solid; 67.6 mg, 62% yield. m.p. 101~102 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.29~8.27 (m, 2H), 7.85~7.76 (m, 4H), 7.48~7.38 (m, 6H), 7.32 (d, J=8.0 Hz, 2H), 7.13~7.08 (m, 2H), 6.80 (d, J=8.4 Hz, 2H), 3.49~3.43 (m, 1H), 2.92~2.86 (m, 1H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.2 (d, J=6.6 Hz), 166.5 (d, 1JC—F=252.9 Hz), 163.92 (s), 132.8, 132.5 (d, 4JC—P=8.9 Hz), 131.5, 131.2, 131.0(d, 2JC—P=9.4 Hz), 130.8(d, 3JC—P=9.1 Hz), 128.7 (d, 3JC—F=8 Hz), 128.5 (d, 7JC—P=5.1 Hz), 122.6, 121.2, 115.2 (d, 2JC—F=21.6 Hz), 91.8 (d, 6JC—P=5.8 Hz), 87.4, 44.2 (d, 4JC—F=3.5 Hz), 39.21 (d, 1JC—P=71.9 Hz), 28.7 (d, 5JC—P=6.6 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.21; IR (KBr) ν: 3056, 2928, 2234, 1683, 1485, 1437, 1190, 824, 695 cm-1; HRMS (ESI) calcd for C30H23BrFO2PNa [M+Na]+ 567.0501, found 567.0514.
2-[(Diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-2-methyl-4-(m-tolyl)but-3-yn-1-one (3g): Yellow oil. 46.1 mg, 48% yield. 1H NMR (400 MHz, CDCl3) δ: 8.30~8.24 (m, 2H), 7.83~7.73 (m, 4H), 7.47~7.41 (m, 2H), 7.40~7.36 (m, 4H), 7.10~7.03 (m, 4H), 6.78~6.73 (m, 1H), 6.67 (d, J=2.0 Hz, 1H), 3.42~3.35 (m, 1H), 2.91~2.83 (m, 1H), 2.24 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.7 (d, 7JC—P=6.8 Hz), 165.2 (d, 1JC—F=252.7 Hz), 137.6, 132.6 (d, 5JC—F=9.1 Hz), 132.0, 131.6 (d, 14JC—F=3.3 Hz), 131.5, 131.4 (d, 13JC—F=3.4 Hz), 131.1 (d, 4JC—F=9.3Hz), 130.8 (d, 6JC—P=9.1 Hz), 129.2, 128.6 (d, 10JC—P=5.1 Hz), 128.5 (d, 11JC—P=4.9 Hz), 128.5, 128.4, 127.8, 122.2, 115.1 (d, 3JC—F=21.7 Hz), 90.2 (d, 9JC—P=6.2 Hz), 88.6, 44.2 (d, 12JC—P=3.6 Hz), 39.0 (d, 2JC—P=71.9 Hz), 28.7(d, 8JC—P=6.4 Hz), 21.2; 31P NMR (162 MHz, CDCl3) δ: 27.64; IR (KBr) ν: 3056, 2924, 2216, 1684, 1505, 1437, 1192, 844, 692 cm-1; HRMS (ESI) calcd for C31H26FO2PNa [M+Na]+ 503.1552, found 503.1563.
2-[(Diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-2-methyl-4-(o-tolyl)but-3-yn-1-one (3h): Yellow solid; 52.9 mg, 50% yield. m.p. 98~99 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.37~8.27 (m, 2H), 7.87~7.75 (m, 4H), 7.45~7.35 (m, 6H), 7.19~7.15 (m, 1H), 7.13~7.06 (m, 3H), 7.04~6.99 (m, 1H), 6.94~6.89 (m, 1H), 3.50~3.42 (m, 1H), 3.03~2.92 (m, 1H), 2.16 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.6 (d, 9JC—P=6.2 Hz), 165.1 (d, 1JC—F=252.6 Hz), 140.1, 132.6 (d, 6JC—F=9.0 Hz), 131.9, 131.7 (d, 13JC—F=3.1 Hz), 131.4 (d, 14JC—P=2.5 Hz), 130.9 (d, 4JC—P=9.2Hz), 130.7 (d, 5JC—P=9.1 Hz), 129.18, 128.5 (d, 10JC—P=4.1 Hz), 128.4 (d, 11JC—P=4.1 Hz), 128.3, 125.2, 122.1, 115.0 (d, 3JC—F=21.5 Hz), 94.3 (d, 7JC—P=6.4 Hz), 87.5, 44.5 (d, 12JC—P=4.1 Hz), 39.5 (d, 2JC—P=71.5 Hz), 28.8 (d, 8JC—P=6.4 Hz), 20.5; 31P NMR (162 MHz, CDCl3) δ: 27.29; IR (KBr) ν: 3057, 2927, 2220, 1686, 1598, 1437, 1190, 846, 696 cm-1; HRMS (ESI) calcd for C31H26FO2PNa [M+Na]+ 503.1552, found 503.1567.
2-[(Diphenylphosphoryl)methyl]-4-(4-ethylphenyl)-1-(4-fluorophenyl)-2-methylbut-3-yn-1-one (3i): Yellow oil. 54.4 mg, 55% yield. 1H NMR (400 MHz, CDCl3) δ: 8.31~8.24 (m, 2H), 7.84~7.72 (m, 4H), 7.46~7.35 (m, 6H), 7.09~6.97 (m, 4H), 6.87~6.80 (m, 2H), 3.42~3.33 (m, 1H), 2.92~2.84 (m, 1H), 2.62~2.56 (m, 2H), 1.91 (s, 3H), 1.19 (t, J=7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.7 (d, 7JC—P=6.8 Hz), 165.2 (d, 1JC—F=252.6 Hz), 144.8, 132.6 (d, 5JC—F=9.2 Hz), 131.7 (d, 13JC—P=3.3 Hz), 131.4 (d, 14JC—F=3.1 Hz), 131.38, 131.1 (d, 4JC—P=9.4 Hz), 130.8 (d, 6JC—P=9.1 Hz), 128.6 (d, 10JC—P=5.1 Hz), 128.5 (d, 11JC—P=5.1 Hz), 127.52, 119.59, 115.0 (d, 3JC—F=21.5 Hz), 89.9 (d, 8JC—P=6.4 Hz), 88.58, 44.3 (d, 12JC—P=3.6 Hz), 39.0 (d, 2JC—P=71.9 Hz), 28.85, 28.7 (d, 9JC—P=6.3 Hz), 15.45; 31P NMR (162 MHz, CDCl3) δ: 27.24; IR (KBr) ν: 3052, 2915, 2210, 1685, 1598, 1422, 1187, 846, 695 cm-1; HRMS (ESI) calcd for C32H28F- O2PNa [M+Na]+ 517.1709, found 517.1719.
4-[4-(tert-Butyl)phenyl]-2-[(diphenylphosphoryl)methyl]- 1-(4-fluorophenyl)-2-methylbut-3-yn-1-one (3j): Yellow oil. 53.3 mg, 51% yield. 1H NMR (400 MHz, CDCl3) δ: 8.31~8.23 (m, 2H), 7.83~7.71 (m, 4H), 7.45~7.34 (m, 6H), 7.20~7.14 (m, 2H), 7.10~7.03 (m, 2H), 6.91~6.84 (m, 2H), 3.41~3.32 (m, 1H), 2.93~2.84 (m, 1H), 1.91 (s, 3H), 1.28 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 197.6 (d, 7JC—P=6.8 Hz), 165.2 (d, 1JC—F=252.9 Hz), 151.7 (d, 10JC—P=6.3 Hz), 132.6 (d, 5JC—F=9.0 Hz), 131.7 (d, 14JC—P=3.3 Hz), 131.4(3) (d, 15JC—F=2.9 Hz), 131.4(8) (d, 16JC—P=2.9 Hz), 131.2, 131.1 (d, 6JC—P=7.2 Hz), 130.8 (d, 4JC—P=9.2 Hz), 128.6 (d, 12JC—P=5.2 Hz), 128.5 (d, 11JC—P=5.3 Hz), 124.9, 119.4, 115.0 (d, 3JC—F=21.6 Hz), 90.0 (d, 8JC—P=6.7 Hz), 88.5, 44.3 (d, 13JC—P=3.6 Hz), 39.1 (d, 2JC—P=71.7 Hz), 34.8, 31.2, 28.7 (d, 9JC—P=6.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.47; IR (KBr) ν: 3059, 2920, 2226, 1680, 1489, 1448, 1175, 755, 698 cm-1; HRMS (ESI) calcd for C34H32FO2PNa [M+Na]+ 545.2022, found 545.2045.
2-[(Diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-4-(4- methoxyphenyl)-2-methylbut-3-yn-1-one (3k): Yellow oil. 44.7 mg, 45% yield. 1H NMR (400 MHz, CDCl3) δ: 8.34~8.31 (m, 2H), 7.89~7.78 (m, 4H), 7.50~7.43 (m, 6H), 7.13~7.09 (m, 2H), 6.92 (d, J=8.8 Hz, 2H), 6.75 (d, J=8.8 Hz, 2H), 3.81 (s, 3H), 3.47~3.41 (m, 1H), 2.95~2.89 (m, 1H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.6, 166.4 (d, 1JC—F=252.5), 159.6, 132.8, 132.7 (d, 3JC—F=8.9), 131.6 (d, 4JC—F=3.1), 131.4, 131.1 (d, 2JC—P=9.3), 130.8 (d, 3JC—P=9.1), 128.6 (d, 7JC—P=5.5), 128.4 (d, 6JC—P=5.7), 115.1 (d, 2JC—F=21.5), 114.5, 113.5, 89.2(d, 5JC—P=6.3), 88.3, 55.3, 44.2 (d, 8JC—P=3.5), 39.4 (d, 1JC—P=72.0), 28.7 (d, 4JC—P=6.3). 31P NMR (162 MHz, CDCl3) δ:27.63; IR (KBr) ν: 3055, 2931, 2223, 1682, 1599, 1437, 1249, 832, 695 cm-1; HRMS (ESI) calcd for C31H26FO3PNa [M+Na]+ 519.1501, found 519.1515.
2-[(Diphenylphosphoryl)methyl]-1-(4-fluorophenyl)-2-methyl-4-(thiophen-2-yl)but-3-yn-1-one (3l): Yellow oil. 43.5 mg, 46% yield. 1H NMR (400 MHz, CDCl3) δ: 8.32~8.24 (m, 2H), 7.88~7.76 (m, 4H), 7.51~7.41 (m, 6H), 7.22~7.18 (m, 1H), 7.16~7.10 (m, 2H), 6.92~6.87 (m, 1H), 6.80~6.75 (m, 1H), 3.47~3.39 (m, 1H), 2.96~2.88 (m, 1H), 1.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.2 (d, 7JC—P=6.8 Hz), 190.8, 165.2 (d, 1JC—F=253.0 Hz), 132.6 (d, 6JC—P=9.1 Hz), 132.0, 131.8, 131.5 (d, 13JC—F=2.6 Hz), 131.5, 131.1 (d, 4JC—P=9.5 Hz), 130.8 (d, 5JC—P=9.2 Hz), 128.6 (d, 11JC—P=4.6 Hz), 128.5 (d, 10JC—P=4.8 Hz), 127.1, 126.7, 122.2, 115.1 (d, 3JC—F=21.6 Hz), 94.3 (d, 9JC—F=6.3 Hz), 82.0, 44.4 (d, 12JC—P=3.7 Hz), 39.0 (d, 2JC—P=71.8 Hz), 28.6 (d, 8JC—P=6.6 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.18; IR (KBr) ν: 3057, 2927, 2212, 1682, 1598, 1437, 1233, 844, 695 cm-1; HRMS (ESI) calcd for C28H22FO2PSNa [M+Na]+ 495.0960, found 495.0976.
1-(4-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-2-methyl-4-phenylbut-3-yn-1-one (3m): Yellow oil. 58.0 mg, 60% yield. 1H NMR (400 MHz, CDCl3) δ: 8.23 (d, J=8.4 Hz, 1H), 7.88~7.76 (m, 1H), 7.41 (d, J=8.0 Hz, 1H), 7.30~7.24 (m, 1H), 7.23~7.17 (m, 1H), 6.97 (d, J=7.2 Hz, 1H), 3.51~3.40 (m, 1H), 2.98~2.90 (m, 1H), 1.95 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 198.0 (d, 7JC—P=6.2 Hz), 138.7, 133.8, 131.47 (d, 11JC—P=2.2 Hz), 131.5 (d, 9JC—P=3.3 Hz), 131.0 (d, 4JC—P=9.3 Hz), 130.7 (d, 5JC—P=9.1 Hz), 128.6 (d, 3JC—P=22.8 Hz), 128.5 (d, 10JC—P=3.0 Hz), 128.4, 128.2, 128.0, 122.3, 90.4 (d, 2JC—P=42.6 Hz), 88.4, 44.3 (d, 8JC—P=3.5 Hz), 39.1 (d, 1JC—P=71.6 Hz), 28.7 (d, 6JC—P=6.6 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.49; IR (KBr) ν: 3056, 2928, 2165, 1685, 1588, 1437, 1191, 754, 692 cm-1; HRMS (ESI) calcd for C30H24ClO2PNa [M+Na]+ 505.1100, found 505.1124.
4-[(Diphenylphosphoryl)methyl]-4-methyl-1-phenylno-na-1, 5-diyn-3-one (3n): Yellow oil. 35.1 mg, 40% yield. 1H NMR (400 MHz, CDCl3) δ: 7.88~7.75 (m, 4H), 7.51~7.38 (m, 6H), 7.32~7.26 (m, 1H), 7.26~7.20 (m, 2H), 7.09~6.99 (m, 2H), 3.32~3.20 (m, 1H), 3.05~2.94 (m, 1H), 2.92~2.83 (m, 1H), 2.79~2.70 (m, 1H), 1.67 (s, 3H), 1.36~1.33 (m, 2H), 0.93 (t, J=7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 209.4 (d, 5JC—P=4.6 Hz), 131.6, 131.4 (d, 7JC—P=1.5 Hz), 131.1 (d, 1JC—P=9.4 Hz), 131.0 (d, 2JC—P=9.1 Hz), 128.6, 128.5 (d, 4JC—P=4.6 Hz), 128.4, 128.2, 128.0, 127.9, 122.6, 90.0 (d, 3JC—P=5.1 Hz), 86.9, 45.2 (d, 6JC—P=3.8 Hz) 38.8, 31.4, 23.7, 22.6, 14.1; 31P NMR (162 MHz, CDCl3) δ: 27.50; IR (KBr) ν: 3056, 2928, 2164, 1697, 1488, 1437, 1190, 829, 695 cm-1; HRMS (ESI) calcd for C29H27O2PNa [M+Na]+ 461.1646, found 461.1658.
4-(4-Chlorophenyl)-2-[(diphenylphosphoryl)methyl]-2-methyl-1-(p-tolyl)but-3-yn-1-one (3o): Yellow oil. 58.6 mg, 59% yield. 1H NMR (400 MHz, CDCl3) δ: 8.35~8.31 (m, 2H), 7.87~7.76 (m, 4H), 7.44~7.39 (m, 6H), 7.20~7.16 (m, 1H), 7.13~7.08 (m, 3H), 7.05~7.01 (m, 1H), 6.93 (d, J=7.2 Hz, 1H), 3.51~3.45 (m, 1H), 3.01~2.95 (m, 1H), 2.17 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.8 (d, 6JC—P=7.6 Hz), 149.6, 134.2 (d, 2JC—P=15.8 Hz), 132.6, 132.4, 131.5 (d, 5JC—P=8.9 Hz), 131.1 (d, 3JC—P=9.1 Hz), 130.7 (d, 4JC—P=9.0 Hz), 130.2, 128.7, 128.2, 127.5, 121.0, 91.8 (d, 7JC—P=5.6 Hz), 87.1, 44.1 (d, 9JC—P=3.1 Hz), 38.8(d, 1JC—P=72.7 Hz), 28.9, 28.4(d, 8JC—P=4.9 Hz), 15.18; 31P NMR (162 MHz, CDCl3) δ:27.22; IR (KBr) ν: 3055, 2966, 2126, 1682, 1605, 1437, 1183, 829, 695 cm-1; HRMS (ESI) calcd for C31H26ClO2PNa [M+Na]+ 519.1257, found 519.1271.
4-(4-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-2-methyl-1-(m-tolyl)but-3-yn-1-one (3p): Yellow oil. 50.7 mg, 51% yield. 1H NMR (400 MHz, CDCl3) δ: 8.12 (d, J=8.4 Hz, 2H), 7.85~7.72 (m, 5H), 7.47~7.34 (m, 7H), 7.20 (d, J=8.0 Hz, 2H), 7.14~7.10 (m, 2H), 6.85~6.82 (m, 2H), 3.42~3.36 (m, 1H), 2.84~2.78 (m, 1H), 2.39 (s, 3H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.8, 143.5, 134.2, 132.7, 132.2, 131.6 (d, 9JC—P=2.9 Hz), 131.5 (d, 8JC—P=3.1 Hz), 131.3 (d, 2JC—P=9.4 Hz), 130.7 (d, 3JC—P=d, J=9.2 Hz), 130.1, 128.8, 128.3, 121.1, 91.8 (d, 4JC—P=6.1 Hz), 87.2 (d, 10JC—P=2.1 Hz), 44.1 (d, 7JC—P=3.6 Hz), 38.8 (d, 1JC—P=71.9 Hz), 28.4 (d, 5JC—P=5.9 Hz), 21.7 (d, 6JC—P=5.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.92; IR (KBr) ν: 3055, 2916, 2167, 1680, 1489, 1437, 1183, 827, 692 cm-1; HRMS (ESI) calcd for C31H26Cl- O2PNa [M+Na]+ 519.1257, found 519.1266.
4-(4-Chlorophenyl)-2-[(diphenylphosphoryl)methyl]-2-methyl-1-(o-tolyl)but-3-yn-1-one (3q): Yellow oil. 53.7 mg, 54% yield. 1H NMR (400 MHz, CDCl3) δ: 8.06 (d, J=7.6 Hz, 1H), 7.86~7.81 (m, 4H), 7.48~7.43 (m, 6H), 7.35~7.31 (m, 1H), 7.26 (d, J=7.6 Hz, 1H), 7.23~7.19 (m, 1H), 7.15 (d, J=8.4 Hz, 2H), 6.80 (d, J=8.0 Hz, 2H), 3.53~3.47 (m, 1H), 2.97~2.91 (m, 1H), 2.46 (s, 3H), 1.84 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 203.2 (d, 8JC—P=5.6 Hz), 137.3, 136.8, 134.9(d, 2JC—P=27 Hz), 134.1, 133.9 (d, 3JC—P=26.9 Hz), 132.6, 131.5, 131.1(d, 5JC—P=9.4 Hz), 130.9 (d, 9JC—P=4.7 Hz), 130.7, 130.2, 128.6 (d, 4JC—P=11.7 Hz), 128.3, 128.2, 124.3, 121.0, 91.5 (d, 7JC—P=6.1 Hz), 86.9, 45.9 (d, 10JC—P=3.9 Hz), 38.7 (d, 1JC—P=71.7 Hz), 28.3 (d, 6JC—P=7.4 Hz), 20.4; 31P NMR (162 MHz, CDCl3) δ: 27.44; IR (KBr) ν: 3055, 2928, 2152, 1697, 1488, 1437, 1190, 829, 695 cm-1; HRMS (ESI) calcd for C31H26ClO2PNa [M+Na]+ 519.1257, found 519.1264.
4-(4-Chlorophenyl)-2-[(diphenylphosphoryl)methyl]-1-(4-ethylphenyl)-2-methylbut-3-yn-1-one (3r): Yellow oil. 52.1 mg, 51% yield. 1H NMR (400 MHz, CDCl3) δ: 8.21 (d, J=8.4 Hz, 2H), 7.90~7.85 (m, 2H), 7.82~7.76 (m, 2H), 7.47~7.39 (m, 6H), 7.28 (d, J=8.4 Hz, 2H), 7.16 (d, J=8.4 Hz, 2H), 6.88 (d, J=8.4 Hz, 2H), 3.49~3.43 (m, 1H), 2.91~2.85 (m, 1H), 2.74~2.68 (m, 2H), 2.00 (s, 3H), 1.31~1.25 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.8 (d, 7JC—P=7.7 Hz), 149.5, 135.3 (d, 1JC—P=269.9 Hz), 134.4(d, 6JC—P=8.3 Hz), 134.1, 133.4, 132.6, 132.4, 131.4 (d, 13JC—P=2.6 Hz), 131.384 (d, 12JC—P=2.7 Hz), 131.1 (d, 4JC—P=9.3 Hz), 130.7 (d, 5JC—P=9.1 Hz), 130.2, 128.6 (d, 3JC—P=20.1 Hz), 128.5 (d, 11JC—P=3.2 Hz), 128.2, 127.5, 91.8 (d, 8JC—P=6 Hz), 87.1, 44.2 (d, 10JC—P=3.5 Hz), 38.8 (d, 2JC—P=72.1 Hz), 28.9, 28.3 (d, 9JC—P=5.3 Hz), 15.2; 31P NMR (162 MHz, CDCl3) δ: 27.98; IR (KBr) ν: 3055, 2967, 2122, 1682, 1605, 1437, 1183, 829, 695 cm-1; HRMS (ESI) calcd for C32H28ClO2PNa [M+Na]+ 533.1413, found 533.1409.
1-[3-(tert-Butyl)phenyl]-4-(4-chlorophenyl)-2-[(diphen-ylphosphoryl)methyl]-2-methylbut-3-yn-1-one (3s): Yellow oil. 55.0 mg, 51% yield. 1H NMR (400 MHz, CDCl3) δ: 8.26~8.20 (m, 2H), 7.91~7.85 (m, 2H), 7.82~7.75 (m, 2H), 7.49~7.40 (m, 8H), 7.20~7.15 (m, 2H), 6.91~6.86 (m, 2H), 3.49~3.41 (m, 1H), 2.92~2.83 (m, 1H), 2.01 (s, 3H), 1.38 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 197.8 (d, 6JC—P=6.8 Hz), 156.3, 132.6, 131.1 (d, 2JC—P=9.2 Hz), 130.6 (d, 3JC—P=9.0 Hz), 129.9, 128.6 (d, 5JC—P=8.3 Hz), 128.5 (d, 4JC—P=8.5 Hz), 128.2, 125.0, 121.1, 91.8 (d, 7JC—P=6.1 Hz), 87.0, 44.1 (d, 9JC—P=3.5 Hz), 38.7 (d, 1JC—P=72.2 Hz), 35.1, 31.1, 28.3 (d, 8JC—P=5.1 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.68; IR (KBr) ν: 3055, 2963, 2146, 1682, 1603, 1437, 1189, 828, 695 cm-1; HRMS (ESI) calcd for C34H32ClO2PNa [M+Na]+ 561.1726, found 561.1714.
4-(4-Chlorophenyl)-2-[(diphenylphosphoryl)methyl]-1-(3-methoxyphenyl)-2-methylbut-3-yn-1-one (3t): Yellow oil. 45.1 mg, 44% yield. 1H NMR (400 MHz, CDCl3) δ: 8.38~8.31 (m, 2H), 7.92~7.79 (m, 4H), 7.48~7.38 (m, 6H), 7.29~7.24 (m, 1H), 7.23~7.17 (m, 2H), 7.01~6.91 (m, 4H), 3.89 (s, 3H), 3.46~3.39 (m, 1H), 2.93~2.85 (m, 1H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.6 (d, 7JC—P=6.6 Hz), 165.1 (d, 1JC—P=252.6 Hz), 138.4, 132.6 (d, 6JC—P=7.9 Hz), 131.4, 131.2, 131.1 (d, 4JC—P=9.3 Hz), 130.7 (d, 5JC—P=9.1 Hz), 128.7, 128.6 (d, 9JC—P=5.0 Hz), 128.5 (d, 8JC—P=5.1 Hz), 119.3, 115.0 (d, 3JC—P=21.6 Hz), 89.8 (d, 1JC—P=6.3 Hz), 88.5, 44.2 (d, 11JC—P=3.6 Hz), 39.0 (d, 2JC—P=71.8 Hz), 28.7 (d, 10JC—P=4.2 Hz), 21.5; 31P NMR (162 MHz, CDCl3) δ: 27.55; IR (KBr) ν: 2924, 2220, 1682, 1598, 1437, 1233, 1189, 816, 695 cm-1; HRMS (ESI) calcd for C31H26ClO3PNa [M+Na]+ 535.1206, found 535.1215.
1, 4-Bis(4-chlorophenyl)-2-[(diphenylphosphoryl)meth-yl]-2-methylbut-3-yn-1-one (3u): Yellow solid; 66.2 mg, 64% yield. m.p. 111~112 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.19 (d, J=8.4 Hz, 2H), 7.86~7.75 (m, 4H), 7.47~7.36 (m, 8H), 7.16 (d, J=8.4 Hz, 2H), 6.86 (d, J=8.4 Hz, 2H), 3.51~3.40 (m, 1H), 2.95~2.85 (m, 1H), 1.93 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 197.8 (d, 5JC—P=6.2 Hz), 138.7, 134.9, 134.5, 134.4, 133.9, 133.7, 133.5, 132.6, 131.5 (d, 9JC—P=1.7 Hz), 131.2, 131.0 (d, 2JC—P=9.2 Hz), 130.7 (d, 3JC—P=9.0 Hz), 128.6 (d, 7JC—P=3.3 Hz), 128.5 (d, 7JC—P=3.5 Hz), 128.2 (d, 6JC—P=3.8 Hz), 120.8, 91.5, 91.4, 87.4, 44.2 (d, 8JC—P=3.5 Hz), 39.0 (d, 1JC—P=71.6 Hz), 28.7 (d, 4JC—P=6.7 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.40; IR (KBr) ν: 3056, 2928, 2156, 1685, 1589, 1437, 1191, 829, 695 cm-1; HRMS (ESI) calcd for C30H23Cl2O2PNa [M+Na]+ 539.0710, found 539.0717.
4-(4-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-2-methyl-1-(4-(trifluoromethyl)phenyl)but-3-yn-1-one (3v): Yellow oil. 74.9 mg, 68% yield. 1H NMR (400 MHz, CDCl3) δ: 8.31 (d, J=8.4 Hz, 2H), 7.86~7.76 (m, 4H), 7.72 (d, J=8.4 Hz, 2H), 7.50~7.40 (m, 6H), 7.19 (d, J=8.4 Hz, 2H), 6.85 (d, J=8.4 Hz, 2H), 3.54~3.46 (m, 1H), 2.99~2.90 (m, 1H), 1.93 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 199.1 (d, 5JC—P=5.1 Hz), 139.1, 134.5, 132.5, 131.6 (d, 10JC—P=2.2 Hz), 131.5 (d, 11JC—P=2.1 Hz), 131.0, 130.8 (d, 6JC—P=4.1 Hz), 130.7, 129.1, 128.7 (d, 2JC—P=8.9 Hz), 128.6 (d, 12JC—P=2.0 Hz), 128.3, 124.9 (d, 8JC—F=3.7 Hz), 122.3, 120.6, 91.1 (d, 4JC—F=6.0 Hz), 87.5, 44.5 (d, 8JC—P=3.3 Hz), 39.2 (d, 1JC—P=71.5 Hz), 28.8 (d, 3JC—P=7.5 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.41; IR (KBr) ν: 3056, 2930, 2196, 1693, 1498, 1437, 1325, 1119, 694 cm-1; HRMS (ESI) calcd for C31H23Cl- F3O2PNa [M+Na]+ 573.0974, found 573.0981.
4-(4-Chlorophenyl)-2-((diphenylphosphoryl)methyl)-2-methyl-1-(thiophen-2-yl)but-3-yn-1-one (3w): Yellow oil. 44.0 mg, 45% yield. 1H NMR (400 MHz, CDCl3) δ: 8.28 (d, J=3.6 Hz, 1H), 7.90~7.78 (m, 4H), 7.66 (d, J=4.8 Hz, 1H), 7.51~7.43 (m, 3H), 7.40 (s, 3H), 7.20 (d, J=8.4 Hz, 2H), 7.15~7.11 (m, 1H), 6.96 (d, J=8.4 Hz, 2H), 3.43~3.35 (m, 1H), 2.91~2.81 (m, 1H), 2.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.7 (d, 4JC—P=8.5 Hz), 139.9, 134.6, 134.3 (d, 5JC—P=6.4 Hz), 132.7, 131.5 (d, 10JC—P=2.2 Hz), 131.4 (d, 9JC—P=2.4 Hz), 131.2 (d, 3JC—P=9.0 Hz), 130.6 (d, 2JC—P=9.2Hz), 128.7, 128.5 (d, 8JC—P=4.5 Hz), 128.4, 128.2, 127.8, 120.8, 91.7 (d, 6JC—P=5.2 Hz), 87.3, 44.4 (d, J=3.3 Hz), 38.0 (d, 1JC—P=72.4 Hz), 28.8 (d, 7JC—P=5.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 28.01; IR (KBr) ν: 3056, 2925, 2218, 1658, 1498, 1409, 1190, 829, 695 cm-1; HRMS (ESI) calcd for C28H22ClO2PSNa [M+Na]+ 511.0664, found 511.0653.
3-((Diphenylphosphoryl)methyl)-3-methyl-1-phenyldec-1-yn-4-one (3x): Yellow oil. 54.0 mg, 47% yield. 1H NMR (400 MHz, CDCl3) δ: 7.83~7.71 (m, 4H), 7.42~7.39 (m, 6H), 7.23~7.17 (m, 3H), 7.03~6.96 (m, 2H), 3.25~3.18 (m, 1H), 2.97~2.91 (m, 1H), 2.86~2.80 (m, 1H), 2.74~2.68 (m, 1H), 2.22~2.17 (m, 1H), 2.02 (s, 1H), 1.74 (s, 1H), 1.63 (s, 3H), 1.29~1.26 (m, 6H), 0.88~0.85 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 209.4 (d, 13JC—P=4.7 Hz), 134.8 (d, 3JC—P=20.2 Hz), 133.8 (d, 1JC—P=30.2 Hz), 131.5 (d, 4JC—P=11.5 Hz), 131.4 (d, 15JC—P=3.5 Hz), 131.1 (d, 5JC—P=9.4 Hz), 130.9 (d, 6JC—P=9.1 Hz), 128.6 (d, 10JC—P=7.5 Hz), 128.4 (d, 9JC—P=7.6 Hz), 128.1 (d, 2JC—P=23.2 Hz), 122.6 (s), 90.1 (d, 11JC—P=5.1 Hz), 86.8 (s), 45.2 (d, 14JC—P=3.8 Hz), 38.8 (s), 38.4 (s), 37.7 (s), 31.8 (s), 28.9 (s), 28.1 (d, 8JC—P=8.9 Hz), 24.0 (s), 22.6 (s), 14.1 (s); 31P NMR (162 MHz, CDCl3) δ: 27.70; IR (KBr) ν: 3055, 2922, 2361, 1717, 1437, 1187, 1118, 821, 692 cm-1; HRMS (ESI) calcd for C30H33O2PNa [M+Na]+ 479.2116, found 479.2109.
2-([Bis(3, 5-dimethylphenyl)phosphoryl)methyl]-2-me-thyl-1, 4-diphenylbut-3-yn-1-one (3y): Yellow oil. 31.3 mg, 31% yield. 1H NMR (400 MHz, CDCl3) δ: 8.30 (d, J=7.6 Hz, 2H), 7.57~7.50 (m, 2H), 7.49~7.43 (m, 3H), 7.38 (d, J=11.6 Hz, 2H), 7.26 (d, J=7.6 Hz, 1H), 7.22~7.17 (m, 2H), 7.08 (s, 1H), 6.99 (d, J=6.8 Hz, 3H), 3.46~3.38 (m, 1H), 2.93~2.83 (m, 1H), 2.29 (d, J=14.8 Hz, 12H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 198.8 (d, 6JC—P=7.8 Hz), 138.2, 138.1 (d, 11JC—P=2.1 Hz), 138.0, 135.3, 134.2 (d, 4JC—P=19.8 Hz), 133.1 (d, 10JC—P=2.7 Hz), 132.4, 131.4, 129.9, 128.7 (d, 5JC—P=9.2 Hz), 128.2, 128.1 (d, 12JC—P=1.3 Hz), 128.1, 127.8 (d, 3JC—P=20.5 Hz), 122.6, 90.6 (d, 1JC—P=76.3 Hz), 88.2, 44.2 (d, 9JC—P=3.4 Hz), 38.5 (d, 2JC—P=71.3 Hz), 29.7, 28.1 (d, 7JC—P=4.9 Hz), 21.3 (d, 8JC—P=4.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 28.49; IR (KBr) ν: 3051, 2920, 2178, 1685, 1598, 1446, 1185, 850, 691 cm-1; HRMS (ESI) calcd for C34H33O2PNa [M+Na]+ 527.2116, found 527.2122.
Supporting Information 1H NMR and 13C NMR of all new compounds 3a~3x. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.
-
-
[1]
(a) Sharpless, K. B.; Finn, M. G. In Asymmetric Synthesis, Ed.: Morrison, J. D., Academic Press, Orlando, FL, 5 (1985), 247.
(b) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
(c) Zhang, T. S.; Xiong, Y. J.; Hao, W. J.; Zhu, X. T.; Wang, S. L.; Li, G. G.; Tu, S. J.; Jiang, B. J. Org. Chem. 2016, 81, 9350.
(d) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076.
(e) Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2012, 51, 703.
(f) Wang, Z.; Liu, Y.; Liu H.; Bao, W.; Tan, Y.; Wang, M.; Tang, Z.; He, W. Chin. J. Org. Chem. 2018, 38, 2639 (in Chinese).
(王峥, 杨柳, 刘惠兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
(g) Liu, Y.; Lin, L.; Han, Y.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 2705 (in Chinese).
(刘颖杰, 林立青, 韩莹徽, 张鑫, 有机化学, 2019, 39, 2705.) -
[2]
(a) Li, Y.; Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8221.
(b) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505.
(c) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160.
(d) Wu, X.; Chu, L.; Qing, F. L. Angew. Chem. Int. Ed. 2013, 52, 2198.
(e) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y. S.; Han, S. B Org. Lett. 2014, 16, 1310.
(f) Wu, C.; Xiao, H.-J.; Wang, S.-W.; Tang, M.-S.; Tang, Z.-L.; Xia, W.; Li, W.-F.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 9.
(g) Lu, L-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 1237.
(h) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green. Chem. 2018, 20, 3683. -
[3]
(a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
(b) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
(c) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 6811.
(d) Fu, X.; Zhao, W. Chin. J. Org. Chem. 2019, 39, 625 (in Chinese).
(付晓飞, 赵文献, 有机化学, 2019, 39, 625.) -
[4]
(a) Chen, Z. M.; Bai, W.; Wang, S. H.; Yang, B. M.; Tu, Y. Q.; Zhang, F. M. Angew. Chem. Int. Ed. 2013, 52, 978.
(b) Chen, Z. M.; Zhang, Z.; Tu, Y. Q.; Xu, M. H.; Zhang, F. M.; Li, C. C.; Wang, S. H. Chem. Commun. 2014, 50, 10805.
(c) Yu, P.; Lin, J. S.; Li, L.; Zheng, S. C.; Xiong, Y. P.; Zhao, L. J. Tan, B. Liu, X. Y. Angew. Chem. Int. Ed. 2014, 53, 11890.
(d) Li, L.; Li, Z. L.; Wang, F. L.; Guo, Z.; Cheng, Y. F.; Wang, N.; Dong, X. W.; Fang, C.; Liu, J.; Hou, C.; Tan, B. Liu, X. Y. Nat. Commun. 2016, 7, 13852. -
[5]
(a) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
(b) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328.
(c) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.
(d) Chen, Z. M.; Zhang, X. M.; Tu, Y. Q. Chem. Soc. Rev. 2015, 44, 5220. -
[6]
(a) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
(b) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem. Int. Ed. 2013, 52, 6962.
(c) Chu, X. Q.; Meng, H.; Zi, Y.; Xu, X. P.; Ji, S. J. Chem. Commun. 2014, 50, 9718.
(d) Chu, X. Q.; Zi, Y.; Meng, H.; Xu, X. P.; Ji, S. J. Chem. Commun. 2014, 50, 7642.
(e) Li, Y.; Liu, B.; Li, H. B.; Wang, Q.; Li, J. H. Chem. Commun. 2015, 51, 1024.
(f) Li, L.; Gu, Q. S.; Wang, N.; Song, P.; Li, Z. L.; Li, X. H.; Wang, F. L.; Liu, X. Y. Chem. Commun. 2017, 53, 4038.
(g) Zhu, Y. L.; Jiang, B.; Hao, W. J.; Qiu, J.-K.; Sun, J.; Wang, D.-C.; Wei, P.; Wang, A. F.; Li, G.; Tu, S. J. Org. Lett. 2015, 17, 6078.
(h) Yang, S.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2019, 21, 4837. -
[7]
(a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem. Int. Ed. 2016, 55, 10821.
(b) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959.
(c) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359, 3052.
(d) Wang, N.; Li, L.; Li, Z. L.; Yang, N. Y.; Guo, Z.; Zhang, H. X.; Liu, X. Y. Org. Lett. 2016, 18, 6026. -
[8]
(a) Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360, 744.
(b) Chen, D.; Ji, M.; Yao, Y.; Zhu, C. Acta Chim. Sinica 2018, 76, 951.
(c) Wang, N.; Wang, J.; Guo, Y. L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H. X.; Guo, Z.; Li, Z. L.; Liu, X. Y. Chem. Commun. 2018, 54, 8885. -
[9]
Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y Angew. Chem. Int. Ed. 2016, 55, 15100. doi: 10.1002/anie.201608198
-
[10]
(a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388.
(b) Gu, L. J.; Gao, Y.; Ai, X. H.; Jin, C.; He, Y. H.; Li, G. P.; Yuan, M. L. Chem. Commun. 2017, 53, 12946.
(c) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G. Chem. Commun. 2018, 54, 7499.
(d) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y. Angew. Chem. Int. Ed. 2019, 58, 624. -
[11]
(a) Tang, X.; Studer, A. Angew. Chem. Int. Ed. 2018, 57, 814.
(b) Wang, X.; Liu, J.; Yu, Z.; Guo, M.; Tang, X.; Wang, G. Org. Lett. 2018, 20, 6516. -
[12]
(a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem. Int. Ed. 2017, 56, 4545.
(b) Liu, J.; Li, W. P.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 797.
(c) Tang, N.; Shao, X.; Wang, M.; Wu, X.; Zhu, C. Acta Chim. Sinica 2019, 77, 922 (in Chinese).
(汤娜娜, 邵鑫, 王明扬, 吴新鑫, 朱晨, 化学学报, 2019, 77, 922.) -
[13]
(a) Zhao, Q.; Ji, X. S.; Gao, Y. Y.; Hao, W. J.; Zhang, K.-Y.; Tu, S. J.; Jiang, B. Org. Lett. 2018, 20, 3596.
(b) Zhao, Q.; Tu, S.-J.; Jiang, B. Acta Chim. Sinica 2019, 77, 927 (in Chinese).
(赵琦, 屠树江, 姜波, 化学学报, 2019, 77, 927.) -
[14]
(a) Chakravarty, P. K.; Greenlee, W. J.; Parsons, W. H.; Patchett, A. A.; Combs, P.; Roth, A.; Busch, R. D.; Mellin, T. N. J. Med. Chem. 1989, 32, 1886.
(b) Sowa, S.; Stankevič, M.; Szmigielska, A.; Małuszyńska, H.; Kozioł, A. E.; Pietrusiewicz, K. M. J. J. Org. Chem. 2015, 80, 1672.
(c) Li, J.; Zhang, W. W.; Wei, X. J.; Hao, W. J.; Li, G.; Tu, S. J.; Jiang, B. Org. Lett. 2017, 19, 4512. -
[15]
When we prepared this manuscript, Cheng and co-worked reported the same version for the synthesis of γ-ketophosphine oxides by using 1, 4-enyens and diarylphosphine oxides, see: Jin, S.; Sun, S.; Yu, J.-T.; Cheng, J. J. Org. Chem. 2019, 84, 11177.
-
[16]
(a) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem. Int. Ed. 2013, 52, 3972.
(b) Chen, Y. R.; Duan, W. L. J. Am. Chem. Soc. 2013, 135, 16754.
(c) Zhang, C. W.; Li, Z. D.; Zhu, L.; Yu, L. M.; Wang, Z. T.; Li, C. Z. J. Am. Chem. Soc. 2013, 135, 14082.
(d) Zhang, B. C.; Daniliuc, G.; Studer, A. Org. Lett. 2014, 16, 250.
(e) Zhu, X.-T.; Zhao, Q.; Liu, F.; Wang, A.-F.; Cai, P.-J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2017, 53, 6828.
(f) Sun, J.; Qiu, J.-K.; Wu, Y.-N.; Hao, W.-J.; Guo, C.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 754.
(g) Zhu, Y.-L.; Wang, D.-C.; Jiang, B.; Hao, W.-J.; Wei, P.; Wang, A.-F.; Qiu, J.-K.; Tu, S.-J. Org. Chem. Front. 2016, 3, 385.
-
[1]
-
Table 1. Optimization of reaction conditionsa
Entry Ag salt (equiv.) Solvent t/℃ Yieldb/% 1 AgNO3 (2.0) CH3CN/H2O 80 17 2 AgOAc (2.0) CH3CN/H2O 80 6 3 Ag2CO3 (2.0) CH3CN/H2O 80 26 4 Ag2O (2.0) CH3CN/H2O 80 39 5 Ag2O (2.0) DCE/H2O 80 Trace 6 Ag2O (2.0) MeOH/H2O 80 20 7 Ag2O (2.0) DMF/H2O 80 20 8 Ag2O (2.0) 1, 4-Dioxane/H2O 80 17 9 Ag2O (1.0) CH3CN/H2O 80 18 10 Ag2O (3.0) CH3CN/H2O 80 53 11 Ag2O (4.0) CH3CN/H2O 80 53 12 Ag2O (3.0) CH3CN/H2O 90 57 13 Ag2O (3.0) CH3CN/H2O 100 64 14 Ag2O (3.0) CH3CN/H2O 110 63 15 Ag2O (3.0) CH3CN 100 45 a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), silver salt, organic solvent (3.0 mL), H2O (0.5 mL). b Isolated yield based on 1a. Table 2. Substrate scope
-

计量
- PDF下载量: 11
- 文章访问数: 2032
- HTML全文浏览量: 165