Citation: Wang Jing, Jin Zhaohui, Ma Rong, Hao Yinjian, Wang Yijun, Li Ningbo, Xu Xinhua. Efficient Synthesis of 1, 4-Dihydropyridines and Polyhydroquinolines Catalyzed by Novel Schiff Base Zirconium Lewis Acid[J]. Chinese Journal of Organic Chemistry, ;2020, 40(4): 969-977. doi: 10.6023/cjoc201909006 shu

Efficient Synthesis of 1, 4-Dihydropyridines and Polyhydroquinolines Catalyzed by Novel Schiff Base Zirconium Lewis Acid

  • Corresponding author: Li Ningbo, ningboli@sxmu.edu.cn
  • Received Date: 3 September 2019
    Revised Date: 30 October 2019
    Available Online: 11 December 2019

    Fund Project: the National Natural Science Foundation of China 21802093the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0408Project supported by the National Natural Science Foundation of China (No. 21802093), the Shanxi Province Science Foundation for Youths (No. 201701D221035) and the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0408)the Shanxi Province Science Foundation for Youths 201701D221035

Figures(2)

  • A novel air-stable β-naphthol formaldehyde Schiff base zirconium perfluorooctanesulfonate Lewis acid catalyst was successfully synthesized by the reaction of β-naphthol formaldehyde Schiff base zirconium dichlorides with silver perfluorooctanesulfonate in the absence of light at room temperature. The results of catalytic assessment showed that this complex (5 mol%) could effectively catalyze the Hantzsch reaction of aldehydes, β-keto ester and ammonium acetate to obtain 1, 4-dihydropyridine compounds at 80℃ under solvent-free conditions in good to excellent yields. Meanwhile, it could also effectively catalyze the reaction of aromatic aldehydes, cyclic β-diketone, β-keto ester and ammonium acetate to obtain 4-aryl polyhydroquinoline compounds. This catalyst could be reused 5 times, and the yields had no significant decrease. This procedure provides a simple and efficient way for the synthesis of 1, 4-dihydropyridine and polyhydroquinoline compounds.
  • 加载中
    1. [1]

      Chen, G. H.; Wang, L.; Yao, X. M.; Zhang, M. L.; Wu, F. H. Chin. J. Org. Chem. 2010, 30, 997(in Chinese).
       

    2. [2]

      Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Di-marco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.; Macarthy, J. P.; Zhang, R.; Mereland, S. J. Med. Chem. 1995, 38, 119.  doi: 10.1021/jm00001a017

    3. [3]

      Visentin, S.; Rolando, B.; Distlio, A.; Frutterro, R.; Novara, M.; Carbone, E.; Roussel, C.; Vanthuyne, N.; Gasco, A. J. Med. Chem. 2004, 47, 2688.  doi: 10.1021/jm031109v

    4. [4]

      Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Drugs Future 1992, 17, 465.  doi: 10.1358/dof.1992.017.06.175816

    5. [5]

      Plowright, A. T.; Schaus, S. E.; Myers, A. G. Chem. Biol. 2002, 9, 607.  doi: 10.1016/S1074-5521(02)00137-0

    6. [6]

      Maheswara, M.; Siddaiah, V.; Rao, Y. K.; Tzeng, Y. M.; Sridhar, C. J. Mol. Catal. A:Chem. 2006, 260, 179.  doi: 10.1016/j.molcata.2006.07.024

    7. [7]

      Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett 2008, 509.  doi: 10.1055/s-2008-1032093

    8. [8]

      Kumar, A.; Maurya, R. A. Synlett 2008, 883.  doi: 10.1055/s-2008-1042908

    9. [9]

      Arslan, M.; Faydali, C.; Zengin, M.; Kucukislamoglu, M.; Demirhan, H. Turk. J. Chem. 2009, 33, 769.  doi: 10.3906/kim-0812-5

    10. [10]

      Datta, B.; Pasha, M. A. Chin. J. Catal. 2011, 32, 1180.  doi: 10.1016/S1872-2067(10)60252-5

    11. [11]

      Sharma, M.; Agarwal N.; Rawat, D. S. J. Heterocycl. Chem. 2008, 45, 737.  doi: 10.1002/jhet.5570450316

    12. [12]

      Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Afsar, J.; Zare, A.; Khakyzadeh, V.; Beyzavi, M. H. Chin. J. Catal. 2013, 34, 1936.  doi: 10.1016/S1872-2067(12)60678-0

    13. [13]

      Sharma, S. D.; Hazarika, P.; Konwar, D. A. Catal. Commun. 2008, 9, 709.  doi: 10.1016/j.catcom.2007.08.008

    14. [14]

      Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian, H.; Qian, C. T. Tetrahedron 2005, 61, 1539.  doi: 10.1016/j.tet.2004.11.079

    15. [15]

      Hong, M.; Cai, C.; Yi, W. B. J. Fluorine Chem. 2010, 131, 111.  doi: 10.1016/j.jfluchem.2009.10.009

    16. [16]

      Shaabani, A.; Rezayan, A. H.; Rahmati, A.; Sharifi, M. Monatsh. Chem. 2006, 137, 77.  doi: 10.1007/s00706-005-0405-9

    17. [17]

      Reddy, B. P.; Rajesh, K.; Vijayakumar, V. J. J. Chin. Chem. Soc. (Peking) 2011, 58, 384.  doi: 10.1002/jccs.201190041

    18. [18]

      Salehi, H.; Guo, Q. X. Synth. Commun. 2004, 34, 4349.  doi: 10.1081/SCC-200039409

    19. [19]

      Chari, M. A.; Syamasundar, K. Catal. Commun. 2005, 6, 624.  doi: 10.1016/j.catcom.2005.03.010

    20. [20]

      Bridgwood, K. L.; Veitch, G. E.; Ley, S. V. Org. Lett. 2008, 10, 3627.  doi: 10.1021/ol801399w

    21. [21]

      Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2009, 50, 5248.  doi: 10.1016/j.tetlet.2009.07.018

    22. [22]

      Saha, M.; Pal, A. K. Tetrahedron Lett. 2011, 52, 4872.  doi: 10.1016/j.tetlet.2011.07.031

    23. [23]

      Rostamnia, S.; Morsalib, A. RSC Adv. 2014, 4, 10514.  doi: 10.1039/c3ra46709k

    24. [24]

      Rostamnia, S.; Alamgholiloo, H.; Jafari M. Appl. Organomet. Chem. 2018, 32, 4370.  doi: 10.1002/aoc.4370

    25. [25]

      Tan, J.; Liu, X.; Yao, N.; Hu, Y. L.; Li, X. H. ChemistrySelect 2019, 4, 2475.  doi: 10.1002/slct.201803739

    26. [26]

      Yi, W. G.; Jia, Z. Y.; Li, N. B.; Qiu, R. H.; Chen, J. Y.; Xu, X. H. Chin. J. Org. Chem. 2012, 32, 2390(in Chinese).
       

    27. [27]

      Górski, Ł.; Matusevich, A.; Parzuchowski, P.; Łuciuk, I.; Malinowska, E. Anal. Chim. Acta 2010, 665, 39.  doi: 10.1016/j.aca.2010.03.021

    28. [28]

      Jafarpour, M.; Rezaeifard, A.; Gorzin, G. Inorg. Chem. Commun. 2011, 14, 1732.  doi: 10.1016/j.inoche.2011.07.017

    29. [29]

      Li, N. B.; Wang, L. X.; Zhang, L. T.; Zhao, W. J.; Qiao, J.; Xu, X. H.; Liang, Z. W. ChemCatChem 2018, 10, 3532.  doi: 10.1002/cctc.201800590

    30. [30]

      Li, N. B.; Wang, L. X.; Wang, H. J.; Qiao, J.; Zhao, W. J.; Xu, X. H.; Liang, Z. W. Tetrahedron 2018, 74, 1038.

    31. [31]

      Wang, L. X.; Li, N. B.; Wang, H. J.; Liu, W.; Diao, H. P.; Xu, X. H. Chin. J. Org. Chem. 2019, 39, 1802(in Chinese).
       

    32. [32]

      Li, N. B.; Yao, J.; Wang, L. X.; Wei, J. C.; Liu, W.; Liu, W. Q.; Xu, X. H.; Liang, Z. W. Inorg. Chem. Commun. 2018, 98, 99.  doi: 10.1016/j.inoche.2018.10.010

    33. [33]

      Li, N. B.; Qiu, R. H.; Zhang, X. H.; Chen, Y.; Yin, S. F.; Xu, X. H. Tetrahedron 2015, 71, 4275.  doi: 10.1016/j.tet.2015.05.013

    34. [34]

      Li, N. B.; Wang, J. Y.; Zhang, X. H.; Qiu, R. H.; Wang, X.; Chen, J. Y.; Yin, S. F.; Xu, X. H. Dalton. Trans. 2014, 43, 11696.  doi: 10.1039/C4DT00549J

    35. [35]

      Li, N. B.; Wang, X.; Qiu, R. H.; Xu, X. H.; Chen, J. Y.; Zhang, X. H.; Chen, S. H.; Yin, S. F. Catal. Commun. 2014, 43, 184.  doi: 10.1016/j.catcom.2013.10.013

    36. [36]

      Li, N. B.; Zhang, X. H.; Xu, X. H.; Chen, Y.; Chen, J. Y.; Qiu, R. H.; Wang, X.; Yin, S. F. Adv. Synth. Catal. 2013, 355, 2430.  doi: 10.1002/adsc.201300439

    37. [37]

      Lei, M.; Lei, M.; Hu, L. H. Synth. Commun. 2011, 41, 1969.  doi: 10.1080/00397911.2010.494814

    38. [38]

      Wei, Z. Z.; Li, J. F.; Wang, Z. Y.; Li, P. H.; Wang, Y. Q. Chin. J. Org. Chem. 2017, 37, 1835(in Chinese).
       

    39. [39]

      Zhang, Y. H.; Zhang, Z. Q.; Wu, Q. Acta Pharm. Sin. 1991, 26, 375(in Chinese).
       

    40. [40]

      Li, B. L.; Zhong, A. G. Ying, A. G. J. Heterocycl. Chem. 2015, 52, 445.  doi: 10.1002/jhet.2070

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    8. [8]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(16)
  • Abstract views(1502)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return