Cobalt-Catalyzed Bidentate-Assisted Regioselective C—H Alkoxylation of 1-Naphthylamide with Alcohols

Mengfan Zhang Ruipeng Li Zhen Yang Ruokun Feng

Citation:  Zhang Mengfan, Li Ruipeng, Yang Zhen, Feng Ruokun. Cobalt-Catalyzed Bidentate-Assisted Regioselective C—H Alkoxylation of 1-Naphthylamide with Alcohols[J]. Chinese Journal of Organic Chemistry, 2020, 40(3): 714-723. doi: 10.6023/cjoc201908040 shu

钴催化双齿导向基辅助的1-萘胺衍生物与醇的区域选择性碳氢键烷氧基化反应

    通讯作者: 杨震, fengshenghm@usx.edu.cn
    冯若昆, 33168466@qq.com
  • 基金项目:

    绍兴市科技计划 2018C10017

    浙江省自然科学基金 LQ15B020002

    浙江省自然科学基金(No.LQ15B020002)和绍兴市科技计划(No.2018C10017)资助项目

摘要: 研究了吡啶酰胺双齿导向的钴催化1-萘胺衍生物的区域选择性碳氢键烷氧基化反应.研究发现不仅一元醇可以作为烷氧化剂在标准条件下较好地实现1-萘胺C(8)位的烷氧化反应,而且具有多重用途的脂肪二元醇以及低聚乙二醇,也可以以中等的收率得到相应的目标化合物,这可能是钴催化碳氢键活化构筑碳氧键的首次发现.此外,利用这个实验方法,以氘代甲醇为烷氧化试剂实现了同位素标记的8-烷氧基取代的1-萘胺衍生物的合成.通过控制实验,发现该反应中吡啶酰基是最佳的双导向基团,而且反应过程可能经历了单电子转移机理.

English

  • Functionalized 1-naphthylamine compounds have been recognized as important molecules which could potentially be applied as ligand, fluorescent probes and bioactive molecule.[1] The selective C—H bond activation of 1-naph- thylamine has emerged as an attractive method to construct corresponding 1-naphthylamine derivatives.[2~12] Various types of C(8)-functionalizations of 1-naphthylmide derivatives such as arylation, [4] alkylation, [5] alkenylation, [6] amination, [7] heteroarylation, [7a, 8] chalcogenation, [9] and cyanation[10] have been developed using Pd, Cu and Rh catalysts. In terms of etherification, Daugulis and co-workers[11] first reported the C(8)-phenoxylation of 1-naphthylamide mediated by copper through a bidentate-picolinamide moiety as a directing group. Recently, Punniyamurthy and co-workers[12] reported the Cu-catalyzed C(8)-phenoxyla- tion of naphthylamides with arylboronic acids using water as an oxygen source. However, taking advantage of transition-metal catalyzed C—H bond activation, directed C(8)-alkoxylation of 1-naphthylamide using alcohol as alkoxylation reagent has rarely been explored, due to the alkoxyl-metal intermediates formed tend to undergo β-H elimination.[13]

    Recently, Co-catalyzed C—H activation has received increasing attention in organic synthesis because of its inexpensive and sustainable. And much progress has been made in constructing C—C and C—X bonds mediated by cobalt, and which has been reviewed by Ackermann[14], Niu[15] and others[16, 17]. Inspired by cobalt-catalyzed C—O bond construction of arenes and alkenes, reported by Song, [18] Zeng, [19] Zhang, [20] Wu, [21] Chatani, [22] and Acker- mann, [23] respectively, we speculated that a cobalt catalyst might also promote the C(8)-alkoxylation of N-(naphthalen- 1-yl)picolinamide applying alcohols, especially diols, as alkoxylation reagents.

    To probe the feasibility of this approach, initially, the reaction of N-(naphthalen-1-yl)picolinamide (1) with methanol (2a) was explored in the presence of Co(OAc)2 (30 mol%), Ag2CO3 (2.0 equiv.) and KOAc (2.0 equiv.). As expected, the desired N-(8-methoxynaphthalen-1-yl)pico- linamide (3a) was obtained in 32% yield (Table 1, Entry 1) and the structure of 3a was further confirmed by X-ray crystallography.[24] Other catalysts were investigated including CoCl2, Co2(CO)8, Co(acac)2 and Pd(OAc)2. It was found that CoCl2 and Co2(CO)8 failed to give a better yield than Co(OAc)2, and no desired product was achieved when Co(acac)2 and Pd(OAc)2 were introduced (Table 1, Entries 2~5). Different oxidants were also examined in this transformation and Mn(OAc)2 was proved to be the best oxidant giving 3a in 61% yield (Table 1, Entries 6~10). Na2CO3, K2CO3 and Cs2CO3 were found to be inferior compared to KOAc for providing 3a in 25%, 28%, and 30% yields (Table 1, Entries 10~13), respectively, and it was noteworthy that 8-(picolinamido)naphthalen-1-yl acetate reported by Zeng[19] was not detected, even though the amount of KOAc was increased to 10 equiv. (Table 1, Entry 14). The control experiments indicated that the cobalt catalyst and oxidant were essential, as no reaction took place in the absence of Co(OAc)2 and Mn(OAc)2 (Table 1, Entries 15, 16). The reaction was less active when phase transfer catalysts were added (Table 1, Entries 17~20). The addition of other solvent, such as toluene and O-chlorotoluene, the yield was reduced significantly (Table 1, Entries 21, 22). It was found that the yield was decreased when the amount of Co(OAc)2 was reduced (Table 1, Entries 23, 24). Finally, the optimized reaction conditions were obtained: Co(OAc)2 (30 mol%), Mn(OAc)2 (2.0 equiv.), KOAc (2.0 equiv.) in MeOH (1.0 mL) at 80 ℃ for 12 h.

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Cat. Oxidant Base Additive Yieldb/%
    1 Co(OAc)2 Ag2CO3 KOAc 32
    2 CoCl2 Ag2CO3 KOAc 12
    3 Co2(CO)8 Ag2CO3 KOAc 21
    4 Co(acac)2 Ag2CO3 KOAc NR
    5 Pd(OAc)2 Ag2CO3 KOAc NR
    6 Co(OAc)2 Ag2O KOAc 40
    7 Co(OAc)2 AgOAc KOAc 20
    8 Co(OAc)2 AgOTFA KOAc 23
    9 Co(OAc)2 Mn(OAc)2•2H2O KOAc 17
    10 Co(OAc)2 Mn(OAc)2 KOAc 61
    11 Co(OAc)2 Mn(OAc)2 Na2CO3 25
    12 Co(OAc)2 Mn(OAc)2 K2CO3 28
    13 Co(OAc)2 Mn(OAc)2 Cs2CO3 30
    14 Co(OAc)2 Mn(OAc)2 KOAc 43c
    15 Mn(OAc)2 KOAc 0
    16 Co(OAc)2 KOAc 0
    17 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NI 13
    18 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NOAc 21
    19 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NPF6 26
    20 Co(OAc)2 Mn(OAc)2 KOAc 18-Crown-6 38
    21 Co(OAc)2 Mn(OAc)2 KOAc 19d
    22 Co(OAc)2 Mn(OAc)2 KOAc 21e
    23 Co(OAc)2 Mn(OAc)2 KOAc 44 f
    24 Co(OAc)2 Mn(OAc)2 KOAc 13 g
    a Reaction conditions unless otherwise specified: 1 (0.1 mmol), catalyst (30 mol%), oxidant (2.0 equiv.), base (2.0 equiv.), additive (2.0 equiv.), MeOH (1 mL), 80 ℃ under air for 12 h. b Isolated yield. c The amount of KOAc was increased to 10 equiv. d Used toluene as the solvent and the volume ratio of MeOH and toluene was 1:1 (1.0 mL). e Used O-chlorotoluene as the solvent and the volume ratio of MeOH and O-chlorotoluene was 1:1 (1.0 mL). f The amount of Co(OAc)2 was reduced to 20 mol%. g The amount of Co(OAc)2 was reduced to 10 mol%.

    With the optimized conditions established, we began to examine the scope of the reaction with respect to various alcohols. A variety of linear, branched, monohydric alcohol and glycol were well applicable to give corresponding alkoxylated products 3a~3s. Among simple primary alkyl alcohols, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, hexanol gave the desired products in higher yields (Table 2, Entries 1~7). Trifluoroethanol underwent reaction with 1 to form the desired product 3h in low yield under the standard condition. When the oxidant was replaced by Ag2CO3, the reaction yield was increased to 53% (Table 2, Entry 8). Moreover, phenylethanol was proved to be effective coupling partners to provide 3i in 72% yields (Table 2, Entry 9). Gratifyingly, secondary alcohol, such as cyclopentanol 2j could react with 1 to afford the desired product 3j in 66% yield (Table 2, Entry 10). It was worth noting that not only alcohol, but also phenol could act as an alkoxylating reagent, affording the corresponding product 3k in 43% yield (Table 2, Entry 11).

    Table 2

    Table 2.  Cobalt-catalyzed alkoxylation of 1-naphthylamine derivative with various alcoholsa
    下载: 导出CSV

    Glycol compounds were always applied as reducing regent in heterogeneous coupling reaction, ligands in transition metal catalyzed coupling reaction, detection groups in fluorescent probes, phase transfer catalysts in organic synthesis and chemical raw materials in polymer preparation, [25] therefore, we turned our interest to explore the reactivity of glycol under our reaction condition. To our delight, various glycol, such as ethylene glycol, 1, 3-pro- panediol, 1, 4-butanediol, 1, 3-butanediol, diethylene glycol and triethylene glycol could reacted with 1 to afford the corresponding products in mediated yield (Table 2, Entries 12~17). It is worth noting that the yield of 3n was improved to 75% when n-Bu4NPF6 was added (Table 2, Entry 14). Unfortunately, this phase transfer catalyst has no effect on other glycols. Moreover, when the butane- 1, 3-diol (2o) was employed, the desired product was obtained at the position of primary alcohol and no isomer was observed (Table 2, Entry 15). After further research, we found that ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and diethylene glycol monomethyl ether were all tolerated in this transformation, affording the desired compound in 65%~76% yields (Table 2, Entries 18~20).

    The deuterium labeled organic compounds are widely used in analytical chemistry, biochemistry and medicinal chemistry.[26] Therefore, we directly synthesized the deuterated methoxy substituted N-(naphthalen-1-yl)picolin-amide (3a') when d4-deuterated methanol instead of methanol in the standard condition (Scheme 1).

    Scheme 1

    Scheme 1.  Preparation of deuterium labeled methoxylated 1-naphthylamide

    The substrate scope of 1-naphthylamine derivatives was explored as shown in Scheme 2. The results showed that the picolinoyl group was the best directing group for this reaction compared to benzoyl and quinoline-2-carbonyl. Halogenated 1-naphthylamine could afford the desired product in low yield and no target product was detected when nitro-substituted 1-naphthylamine was used as sub- strate.

    Scheme 2

    Scheme 2.  Reaction scope of 1-naphthylamine derivatives

    The directing group was easily removed, and the 8-butoxynaphthalen-1-amine 4 and picolinic acid were obtained (Scheme 3). Furthermore, the ultraviolet absorption spectrum demonstrated that the C(8)-alkoxylated 1-naphthylamine showed a red shifted absorption compared to N-(naphthalen-1-yl)picolinamide.

    Scheme 3

    Scheme 3.  Removal the directing group

    Control experiments were carried out to gain some insight into the possible mechanism (Eqs. 1~4). Initially, the addition of radical scavengers, such as (2, 2, 6, 6-tetra- methylpiperidin-1-yl)oxy (TEMPO) and 1, 4-benzoquinone (BQ), significantly inhibited the reaction, suggesting that a radical pathway may be involved in the reaction and the mechanism likely proceeds via an intermolecular single-electron transfer (SET) process[18, 21, 23, 27, 28] (Eq. 1). Then, the Co(Ⅱ)-catalyzed alkoxylation reaction of N-naphthalen-1-yl-benzamide (1) and MeOH (2a) was performed in presence of 1.0 equiv. Co(OAc)2 and no desired aryl C—H methoxylated product 3a was formed (Eq. 2). This experiment demonstrated that the active Co(Ⅲ) species was possibly involved in this transformation. A kinetic isotope effect (KIE) of 1.20 (kH/kD) was determined through parallel experiments, indicated that C(sp2)—H bond-breaking was not the rate-determining step (Eq. 3). Furthermore, no D/H exchange was observed when 1a was treated with deuterated methanol under standard conditions (Eq. 4). These results may suggest that the C-H cleavage is irreversible.

    In summary, we have developed a cobalt-catalyzed direct alkoxylation of 1-naphthylamide with various alcohols via picolinamide directed C(8)—H activation and C—O bond formation, providing a convenient method to C(8)-alko- xylated 1-naphthylamide. A series of alcohols, including monohydric alcohols, glycol, diethylene glycol, and deuterated alcohol were found to be applicable to the reaction. In addition, the directing group was removed under mild reaction and the introduction of alkoxy group at C(8) of 1-naphthylaminde promoted the red shift of UV absorption. Moreover, the mechanistic investigation suggests that this C—H alkoxylation reaction might proceed via a single-electron-transfer process.

    (1)

    (2)

    (3)

    (4)

    The reagents and solvents were purchased from common commercial sources and used without additional purification, if there is no special version. The starting materials of N-(naphthalen-1-yl)picolinamide were prepared according to the known methods.[2~12, 17] NMR spectra were recorded for 1H NMR at 400 MHz, and 13C NMR at 100 MHz using TMS as internal standard. Mass spectroscopy data of the products were collected on an Xevo G2-XS QTof (Waters).

    A 25 mL sealed tube with a magnetic stir bar was charged with Co(OAc)2 (30 mol%), Mn(OAc)2 (2.0 equiv.), KOAc (2.0 equiv.), 1 (0.1 mmol), alcohol (1 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 12 h. After cooling down, the mixture was filtered through a plug of Celite, and then the residue was concentrated and purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    A 25 mL sealed tube with a magnetic stir bar was charged with Co(OAc)2 (30 mol%), Ag2CO3 (2.0 equiv.), KOAc (2.0 equiv.) and 1 (0.1 mmol), 2, 2, 2-trifluoroethanol (1 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 12 h. After cooling down, the mixture was filtered through a plug of Celite, and then the residue was concentrated and purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    A 25 mL sealed tube with a magnetic stir bar was charged with Co(OAc)2 (30 mol%), Ag2CO3 (2.0 equiv.), KOAc (2.0 equiv.), n-Bu4NPF6 (2.0 equiv.), 1 (0.1 mmol) and butane-1, 4-diol (1 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 12 h. After cooling down, the mixture was filtered through a plug of Celite, and then the residue was concentrated and purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    A 25 mL sealed tube with a magnetic stir bar was charged with 3d (0.1 mmol), NaOH (2 mmol) and MeOH (1 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 12 h. After cooling down, the mixture was concentrated, and then the residue was extracted with ethyl acetate and water. The organic layer was collected and dried over Na2SO4. After concentrated in vacuum and the residue was purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    4.6.1   Kinetic isotope effect of this transformation

    A 25 mL sealed tube with a magnetic stir bar was charged with Co(OAc)2 (30 mol%), Mn(OAc)2 (2.0 equiv.), KOAc (2.0 equiv.), 1 (0.1 mmol) or d-1a (0.1 mmol) and MeOH (1 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 6 h. After cooling down, the mixture was filtered through a plug of Celite, and then the residue was concentrated and purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    4.6.2   H/D exchange experiment

    A 25 mL sealed tube with a magnetic stir bar was charged with Co(OAc)2 (30 mol%), Mn(OAc)2 (2.0 equiv.), KOAc (2.0 equiv.), 1 (0.1 mmol) and CD3OD (1.0 mL). Then the sealed tube was sealed and heated to 80 ℃ with stirring for 6 h. After cooling down, the mixture was filtered through a plug of Celite, and then the residue was concentrated and purified by flash column chromatography with ethyl acetate and petroleum ether as eluent to afford the corresponding products.

    N-(8-Methoxynaphthalen-1-yl)picolinamide (3a): light yellow solid (17 mg, 61% yield), m.p. 174~175; 1H NMR (400 Hz, CDCl3, TMS) δ: 4.20 (s, 3H), 6.91 (d, J=8.0 Hz, 1H), 7.35~7.39 (m, 1H), 7.44~7.50 (m, 2H), 7.53 (d, J=8.0 Hz, 1H), 7.56~7.58 (m, 1H), 7.91 (td, J=8.0, 1.6 Hz, 1H), 8.35 (d, J=8.0 Hz, 1H), 8.69~8.70 (m, 1H), 9.01 (dd, J=8.0, 1.2 Hz, 1H), 13.24 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 56.2, 105.7, 116.6 (2C), 122.0, 122.6, 123.7, 125.6, 126.0, 126.8, 135.2, 136.4, 137.5, 148.0, 151.2, 156.2, 162.4; IR (film) ν: 2958, 2925, 2855, 1667, 1544, 1499, 1291 cm-1; HRMS (ESI) calcd for C17H15N2O2 [M+H]+ 279.1128, found 279.1121.

    N-(8-Ethoxynaphthalen-1-yl)picolinamide (3b): White solid (14 mg, 48% yield), m.p. 117~118 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.72 (t, J=6.0 Hz, 3H), 4.40 (q, J=8.0 Hz, 2H), 6.94 (d, J=8.0 Hz, 1H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.44~7.50 (m, 2H), 7.53 (d, J=8.0 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.92 (td, J=8.0, 2.0 Hz, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.65~8.66 (m, 1H), 9.01 (d, J=8.0 Hz, 1H), 12.77 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 15.1, 65.4, 106.8, 117.0, 117.2, 121.9, 122.7, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.4, 147.7, 151.1, 155.6, 162.8; IR (film) ν: 3052, 2924, 2848, 1671, 1527, 1490, 1271 cm-1; HRMS (ESI) calcd for C18H17N2O2 [M+H]+ 293.1285, found 293.1280.

    N-(8-Propoxynaphthalen-1-yl)picolinamide (3c): White solid (11 mg, 36% yield), m.p. 85~86 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.06 (t, J=6.0 Hz, 3H), 2.12~2.21 (m, 2H), 4.31 (t, J=6.0 Hz, 2H), 6.94 (d, J=8.0 Hz, 1H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.44~7.54 (m, 3H), 7.57~7.60 (m, 1H), 7.93 (td, J=8.0, 4.0 Hz, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.66~8.67 (m, 1H), 9.00 (d, J=8.0 Hz, 1H), 12.75 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 10.8, 22.3, 71.5, 106.8, 117.1, 117.2, 121.8, 122.8, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.4, 147.6, 151.2, 155.7, 162.8; IR (film) ν: 2955, 2924, 2849, 1682, 1535, 1494, 1275 cm-1; HRMS (ESI) calcd for C19H19N2O2 [M+H]+ 307.1441, found 307.1445.

    N-(8-Butoxynaphthalen-1-yl)picolinamide (3d): White solid (23 mg, 73% yield), m.p. 109~110 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 0.93 (t, J=8.0 Hz, 3H), 1.44~1.53 (m, 2H), 2.08~2.15 (m, 2H), 4.33 (t, J=8.0 Hz, 2H), 6.94 (d, J=8.0 Hz, 1H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.45 (d, J=8.0 Hz, 1H), 7.47~7.50 (m, 1H), 7.52~7.53 (m, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.92 (td, J=8.0, 0.8 Hz, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.67 (d, J=8.0 Hz, 1H), 9.00 (d, J=8.0 Hz, 1H), 12.73 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 13.9, 19.3, 31.0, 69.7, 106.8, 117.1, 117.2, 121.8, 122.8, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.4, 147.7, 151.2, 155.7, 162.8; IR (film) ν: 2951, 2920, 2852, 1660, 1532, 1456, 1373 cm-1; HRMS (ESI) calcd for C20H21N2O2 [M+H]+ 321.1598, found 321.1594.

    N-(8-(Pentyloxy)naphthalen-1-yl)picolinamide (3e): White solid (26 mg, 78% yield), m.p. 109~110 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 0.86 (t, J=8.0 Hz, 3H), 1.29~1.38 (m, 2H), 1.39~1.47 (m, 2H), 2.10~2.17 (m, 2H), 4.33 (t, J=8.0 Hz, 2H), 6.94 (d, J=8.0 Hz, 1H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.45 (d, J=8.0 Hz, 1H), 7.48~7.54 (m, 2H), 7.58 (d, J=8.0 Hz, 1H), 7.93 (td, J=8.0, 2.0 Hz, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.67 (d, J=8.0 Hz, 1H), 8.99 (d, J=8.0 Hz, 1H), 12.73 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 14.1, 22.5, 28.3, 28.7, 70.0, 106.8, 117.1, 117.2, 121.8, 122.8, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.5, 147.7, 151.2, 155.7, 162.8; IR (film) ν: 2954, 2913, 2852, 1675, 1532, 1462, 1377 cm-1; HRMS (ESI) calcd for C21H23N2O2 [M+H]+ 335.1754, found 335.1763.

    N-(8-(Hexyloxy)naphthalen-1-yl)picolinamide (3f): White solid (30 mg, 86% yield), m.p. 80~82 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 0.86 (t, J=6.0 Hz, 3H), 1.24~1.34 (m, 4H), 1.43~1.48 (m, 2H), 2.11~2.18 (m, 2H), 4.36 (t, J=6.0 Hz, 2H), 6.97 (d, J=8.0 Hz, 1H), 7.39 (dd, J=8.0, 8.0 Hz, 1H), 7.47 (d, J=8.0 Hz, 1H), 7.51~7.55 (m, 2H), 7.59~7.61 (m, 1H), 7.96 (dd, J=6.0, 6.0 Hz, 1H), 8.39 (d, J=8.0 Hz, 1H), 8.70 (d, J=4.0 Hz, 1H), 8.99~9.01 (m, 1H), 12.75 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 13.9, 22.6, 25.8, 29.0, 31.6, 70.0, 106.9, 117.1, 117.2, 121.8, 122.8, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.4, 147.7, 151.3, 155.7, 162.7; IR (film) ν: 2950, 2925, 2852, 1675, 1532, 1427, 1279 cm-1; HRMS (ESI) calcd for C22H25N2O2 [M+H]+ 349.1911, found 349.1910.

    N-8-(Heptyloxy)naphthalen-1-yl)picolinamide (3g): White solid (32 mg, 88% yield), m.p. 87~89 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 0.85 (t, J=6.0 Hz, 3H), 1.18~1.27 (m, 4H), 1.28~1.33 (m, 2H), 1.40~1.47 (m, 2H), 2.09~2.16 (m, 2H), 4.33 (t, J=8.0 Hz, 2H), 6.95 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.44~7.46 (m, 1H), 7.48~7.53 (m, 2H), 7.57~7. 60 (m, 1H), 7.93 (td, J=8.0, 1.6 Hz, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.67~8.68 (m, 1H), 8.98~9.00 (m, 1H), 12.73 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 14.1, 22.6, 26.1, 29.0, 29.1, 31.8, 70.0, 106.8, 117.1, 117.2, 121.8, 122.8, 124.0, 125.6, 126.1, 126.6, 135.0, 136.5, 137.5, 147.7, 151.2, 155.7, 162.8; IR (film) ν: 2950, 2921 2856, 1532, 1471, 1377, 1058 cm-1; HRMS (ESI) calcd for C23H27N2O2 [M+H]+ 363.2067, found 363.2070.

    N-(8-(2, 2, 2-Trifluoroethoxy)naphthalen-1-yl)picolina-mide (3h): White solid (18 mg, 53% yield), m.p. 201~202 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 4.78 (q, J=8.0 Hz, 2H), 7.07 (d, J=8.0 Hz, 1H), 7.40 (dd, J=8.0, 8.0 Hz, 1H), 7.48~7.51 (m, 1H), 7.53~7.63 (m, 3H), 7.93 (dd, J=8.0, 8.0 Hz, 1H), 8.35 (d, J=8.0 Hz, 1H), 8.66~8.67 (m, 1H), 8.95 (d, J=4.0 Hz, 1H), 12.53 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 68.0, 68.4, 68.7, 69.1, 109.8, 117.3, 118.1, 122.5, 124.2, 124.5, 125.4, 126.3, 127.1, 134.1, 136.5, 137.5, 148.1, 150.7, 154.8, 162.7; IR (film) ν: 2958, 2920, 2860, 1667, 1547, 1468, 1317 cm-1; HRMS (ESI) calcd for C18H14F3N2O2 [M+H]+ 347.1002, found 347.1003.

    N-(8-Phenethoxynaphthalen-1-yl)picolinamide (3i): White solid (28 mg, 80% yield), m.p. 134~136 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 3.49 (t, J=8.0 Hz, 2H), 4.54 (t, J=6.0 Hz, 2H), 6.95 (d, J=8.0 Hz, 1H), 7.20~7.26 (m, 1H), 7.30 (d, J=4.0 Hz, 4H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.44~7. 49 (m, 2H), 7.53 (dd, J=8.0, 8.0 Hz, 1H), 7.59~7.61 (m, 1H), 7.92 (td, J=8.0, 1.6 Hz, 1H), 8.35~8.38 (m, 1H), 8.60~8.61 (m, 1H), 9.00~9.03 (m, 1H), 12.76 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 35.7, 70.7, 107.0, 117.3, 122.2, 122.8, 124.1, 125.6, 126.2, 126.7 (2C), 128.7, 129.0, 134.9, 136.5, 137.5, 137.8, 147.7, 155.3, 162.7; IR (film) ν: 3027, 2933, 2872, 1597, 1499, 1450, 1046 cm-1; HRMS (ESI) calcd for C24H21N2O2 [M+H]+ 369.1598, found 369.1560.

    N-(8-(Cyclopentyloxy)naphthalen-1-yl)picolinamide (3j): light yellow solid (22 mg, 66% yield), m.p. 138~139 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.62~1.69 (m, 2H), 1.78~1.86 (m, 2H), 2.05~2.14 (m, 2H), 2.31~2.39 (m, 2H), 5.08~5.13 (m, 1H), 6.94~6.96 (m, 1H), 7.36 (dd, J=8.0, 8.0 Hz, 1H), 7.42~7.44 (m, 1H), 7.48~7.52 (m, 2H), 7.57~7.59 (m, 1H), 7.93 (td, J=8.0, 1.6 Hz, 1H), 8.36~8.39 (m, 1H), 8.65~8.67 (m, 1H), 8.93~8.96 (m, 1H), 12.36 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 24.7 (2C), 32.8, 81.3, 108.2, 117.6, 121.5, 123.0, 124.2, 125.5, 126.1 (2C), 126.3, 134.8, 136.6, 137.4, 147.5, 151.3, 154.8, 163.0; IR (film) ν: 2954, 2925, 2848, 1679, 1532, 1458, 1270 cm-1; HRMS (ESI) calcd for C21H21N2O2 [M+H]+ 333.1598, found 333.1560.

    N-(8-Phenoxynaphthalen-1-yl)picolinamide (3k): White solid (15 mg, 43% yield), m.p. 116~118 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 6.99 (dd, J=8.0, 1.2 Hz, 1H), 7.18~7.23 (m, 1H), 7.24~7.29 (m, 2H), 7.34~7.38 (m, 2H), 7.40~7.45 (m, 2H), 7.58~7.64 (m, 2H), 7.67 (dd, J=8.0, 1.2 Hz, 1H), 7.82~7.86 (m, 1H), 8.27~8.30 (m, 2H), 9.07 (dd, J=8.0, 1.2 Hz, 1H), 13.05 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 114.0, 117.0, 117.9, 120.1, 122.2, 124.0, 124.2, 125.6, 126.0, 126.9, 129.7, 134.6, 136.6, 137.3, 147.7, 150.5, 154.2, 156.6, 162.7; IR (film) ν: 2983, 2941, 2888, 1689, 1531, 1493, 1232 cm-1; HRMS (ESI) calcd for C22H17N2O2 [M+H]+ 341.1285, found 341.1282.

    N-(8-(2-Hydroxyethoxy)naphthalen-1-yl)picolinamide (3l): White solid (15 mg, 48% yield), m.p. 141~142 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 4.23 (t, J=4.0 Hz, 2H), 4.34 (t, J=4.0 Hz, 2H), 6.96 (d, J=8.0 Hz, 1H), 7.38 (dd, J=8.0, 8.0 Hz, 1H), 7.56~7.58 (m, 3H), 7.60~7.62 (m, 1H), 8.00 (td, J=8.0, 1.6 Hz, 1H), 8.47 (d, J=8.0 Hz, 1H), 8.75 (d, J=4.0 Hz, 1H), 9.03~9.06 (m, 1H), 12.23 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 60.2, 71.7, 106.7, 116.7, 117.7, 122.4, 124.0, 124.5, 125.6, 126.5, 126.6, 134.6, 136.4, 138.4, 147.9, 151.2, 155.6, 162.2; IR (film) ν: 2954, 2920, 2856, 1724, 1528, 1490, 1252 cm-1; HRMS (ESI) calcd for C18H17N2O3 [M+H]+ 309.1234, found 309.1236.

    N-8-(3-Hydroxypropoxy)naphthalen-1-yl)picolinamide (3m): White solid (11 mg, 33% yield), m.p. 111~112 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 2.30~2.36 (m, 2H), 3.84 (t, J=6.0 Hz, 2H), 4.53 (t, J=6.0 Hz, 2H), 6.95 (d, J=8.0 Hz, 1H), 7.34 (dd, J=8.0, 8.0 Hz, 1H), 7.44 (d, J=12.0 Hz, 1H), 7.46~7.48 (m, 1H), 7.50 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.89~7.94 (m, 1H), 8.35 (d, J=8.0 Hz, 1H), 8.66~8.67 (m, 1H), 8.97 (d, J=8.0 Hz, 1H), 12.65 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 31.2, 59.6, 66.3, 106.9, 117.0, 117.3, 122.1, 123.1, 124.2, 125.6, 126.3, 126.6, 134.8, 136.5, 137.8, 147.8, 151.1, 155.1, 162.6; IR (film) ν: 2948, 2917, 2845, 1660, 1524, 1491, 1271 cm-1; HRMS (ESI) calcd for C19H19N2O3 [M+H]+ 323.1390, found 323.1393.

    N-(8-(4-Hydroxybutoxy)naphthalen-1-yl)picolinamide (3n): White solid (25 mg, 75% yield), m.p. 87~88 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.68~1.75 (m, 2H), 2.19~2.24 (m, 2H), 3.65 (t, J=8.0 Hz, 2H), 4.35 (t, J=8.0 Hz, 2H), 6.92 (d, J=8.0 Hz, 1H), 7.35 (dd, J=8.0, 8.0 Hz, 1H), 7.43~7.49 (m, 2H), 7.52 (d, J=8.0 Hz, 1H), 7.56~7.59 (m, 1H), 7.88~7.92 (m, 1H), 8.35 (d, J=8.0 Hz, 1H), 8.68 (d, J=4.0 Hz, 1H), 8.98 (d, J=8.0 Hz, 1H), 12.69 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 25.4, 29.3, 62.4, 69.6, 106.9, 117.0, 117.3, 121.9, 122.8, 124.1, 125.6, 126.2, 126.6, 134.9, 136.5, 137.5, 147.8, 151.1, 155.5, 162.7; IR (film) ν: 2962, 2929, 2868, 1671, 1527, 1495, 1238 cm-1; HRMS (ESI) calcd for C20H21N2O3 [M+H]+ 337.1547, found 337.1550.

    N-(8-(3-Hydroxybutoxy)naphthalen-1-yl)picolina-mide (3o): White solid (19 mg, 57% yield), m.p. 127~128 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.20 (d, J=4.0 Hz, 3H), 2.03~2.11 (m, 1H), 2.29~2.38 (m, 1H), 2.48 (s, 1H), 4.04~4.12 (m, 1H), 4.50~4.61 (m, 2H), 6.97 (d, J=8.0 Hz, 1H), 7.35 (dd, J=8.0, 8.0 Hz, 1H), 7.44~7.53 (m, 3H), 7.58 (d, J=8.0 Hz, 1H), 7.90~7.94 (m, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.69 (d, J=8.0 Hz, 1H), 9.00 (d, J=4.0 Hz, 1H), 12.71 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 23.7, 37.5, 64.8, 66.5, 107.0, 117.0, 117.2, 122.0, 123.1, 124.1, 125.6, 126.3, 126.6, 134.9, 136.5, 137.8, 147.9, 151.1, 155.0, 162.5; IR (film) ν: 2962, 2920, 2849, 1728, 1671, 1535, 1494, 1279 cm-1; HRMS (ESI) calcd for C20H21N2O3 [M+H]+ 337.1547, found 337.1549.

    N-(8-(2-(2-Hydroxyethoxy)ethoxy)naphthalen-1-yl)-picolinamide (3p): White solid (22 mg, 63% yield), m.p. 162~163 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 3.55 (t, J=4.0 Hz, 2H), 3.62 (t, J=4.0 Hz, 2H), 4.15 (t, J=4.0 Hz, 2H), 4.52 (t, J=6.0 Hz, 2H), 6.99 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.47~7.51 (m, 2H), 7.53 (d, J=8.0 Hz, 1H), 7.58~7.60 (m, 1H), 7.91~7.96 (m, 1H), 8.38 (d, J=4.0 Hz, 1H), 8.71 (d, J=4.0 Hz, 1H), 8.94~8.96 (m, 1H), 12.64 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 61.8, 69.1, 69.3, 72.3, 107.9, 117.3, 117.5, 122.5, 122.9, 124.1, 125.6, 126.2, 126.7, 134.7, 136.5, 137.6, 147.7, 151.2, 155.4, 162.6; IR (film) ν: 2957, 2920, 1736, 1369, 1245, 1045 cm-1; HRMS (ESI) calcd for C20H21N2O4 [M+H]+ 353.1496, found 353.1491.

    N-(8-(2-(2-(2-Hydroxyethoxy)ethoxy)ethoxy)naphtha-en-1-yl)picolinamid (3q): White solid (21 mg, 53% yield), m.p. 91~92 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 3.51~3.66 (m, 8H), 4.17 (t, J=6.0 Hz, 2H), 4.53 (t, J=6.0 Hz, 2H), 7.00 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.47~7.53 (m, 3H), 7.59 (d, J=8.0 Hz, 1H), 7.94 (dd, J=8.0, 8.0 Hz, 1H), 8.38 (d, J=8.0 Hz, 1H), 8.72 (s, 1H), 8.96 (d, J=8.0 Hz, 1H), 12.67 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 61.7, 69.2, 69.3, 70.4, 70.7, 72.5, 107.9, 117.2, 117.4, 122.5, 122.9, 124.1, 125.6, 126.2, 126.7, 134.7, 136.5, 137.6, 147.7, 151.2, 155.5, 162.6; IR (film) ν: 2928, 2864, 1724, 1535, 1426, 1233 cm-1; HRMS (ESI) calcd for C22H25N2O5 [M+H]+ 397.1758, found 397.1761.

    N-(8-(2-Methoxyethoxy)naphthalen-1-yl)picolinamide (3r): White solid (21 mg, 65% yield), m.p. 101~102 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 3.36 (s, 3H), 4.08 (t, J=4.0 Hz, 2H), 4.49 (t, J=4.0 Hz, 2H), 7.00 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.48 (d, J=8.0 Hz, 1H), 7.49~7.51 (m, 1H), 7.53 (d, J=8.0 Hz, 1H), 7.59 (d, J=8.0 Hz, 1H), 7.91~7.95 (m, 1H), 8.38 (d, J=4.0 Hz, 1H), 8.72 (d, J=8.0 Hz, 1H), 8.98 (d, J=8.0 Hz, 1H), 12.67 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 59.0, 69.3, 70.5, 107.8, 117.2, 117.3, 122.4, 122.9, 124.0, 125.6, 126.1, 126.6, 134.8, 136.5, 137.5, 147.7, 151.2, 155.6, 162.7; IR (film) ν: 2950, 2917, 2852, 1675, 1532, 1491, 1279 cm-1; HRMS (ESI) calcd for C19H19N2O3 [M+H]+ 323.1390, found 323.1393.

    N-(8-(2-Ethoxyethoxy)naphthalen-1-yl)picolinamide (3s): White solid (25 mg, 76% yield), m.p. 109~110 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 1.13(t, J=6.0 Hz, 3H), 3.51 (q, J=8.0 Hz, 2H), 4.10 (t, J=6.0 Hz, 2H), 4.50 (t, J=6.0 Hz, 2H), 7.01 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.46~7.50 (m, 2H), 7.52 (d, J=8.0 Hz, 1H), 7.58 (d, J=8.0 Hz, 1H), 7.91~7.95 (m, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.71 (d, J=8.0 Hz, 1H), 8.97~8.99 (m, 1H), 12.69 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 66.7, 68.5, 69.4, 107.8, 117.2, 117.3, 122.4, 122.8, 124.0, 125.6, 126.1, 126.6, 134.8, 136.5, 137.5, 147.7, 151.2, 155.6, 162.7; IR (film) ν: 2954, 2925, 2844, 1667, 1532, 1495, 1283 cm-1; HRMS (ESI) calcd for C20H21N2O3 [M+H]+ 337.1547, found 337.1539.

    N-(8-(2-(2-Methoxyethoxy)ethoxy)naphthalen-1-yl)-picolinamide (3t): White solid (24 mg, 67% yield), m.p. 77~78 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 3.33 (s, 3H), 3.46 (t, J=4.0 Hz, 2H), 3.63 (t, J=4.0 Hz, 2H), 4.19 (t, J=6.0 Hz, 2H), 4.54 (t, J=6.0 Hz, 2H), 7.01 (d, J=8.0 Hz, 1H), 7.37 (dd, J=8.0, 8.0 Hz, 1H), 7.46~7.53 (m, 3H), 7.58 (d, J=8.0 Hz, 1H), 7.91~7.95 (m, 1H), 8.37 (d, J=8.0 Hz, 1H), 8.73 (d, J=4.0 Hz, 1H), 8.98 (d, J=8.0 Hz, 1H), 12.69 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 59.1, 69.3, 70.6, 71.9, 107.8, 117.2, 117.3, 122.4, 122.8, 124.0, 125.6, 126.1, 126.6, 134.8, 136.5, 137.5, 147.8, 151.2, 155.5, 162.6; IR (film) ν: 2917, 2868, 1679, 1456, 1350, 1200 cm-1; HRMS (ESI) calcd for C21H23N2O4 [M+H]+, 367.1652, found 367.1658.

    N-(8-Methoxynaphthalen-1-yl)picolinamide (3a'): Light yellow solid (14 mg, 50% yield), m.p. 176~177 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 6.92~6.94 (m, 1H), 7.39 (dd, J=8.0, 8.0 Hz, 1H), 7.46~7.52 (m, 2H), 7.53 (d, J=8.0 Hz, 1H), 7.57~7.59 (m, 1H), 7.91~7.96 (m, 1H), 8.35~8.38 (m, 1H), 8.72~8.73 (m, 1H), 8.99~9.02 (m, 1H), 13.25 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 105.7, 116.6 (2C), 121.9, 122.6, 123.7, 125.6, 126.1, 126.8, 135.2, 136.4, 137.5, 148.0, 151.2, 156.2, 162.4; IR (film) ν: 2949, 2921, 2851, 1679, 1544, 1491, 1290 cm-1; HRMS (ESI) calcd for C17H12D3N2O2 [M+H]+ 282.1316, found 282.1320.

    N-(5-Bromo-8-butoxynaphthalen-1-yl)picolinamide (3w): White solid (13 mg, 32% yield), m.p. 153~155 ℃; 1H NMR (400 Hz, CDCl3, TMS) δ: 0.94 (t, J=8.0 Hz, 3H), 1.44~1.53 (m, 2H), 2.07~2.15 (m, 2H), 4.34 (t, J=6.0 Hz, 2H), 6.82 (d, J=8.0 Hz, 1H), 7.50~7.54 (m, 1H), 7.63~7.70 (m, 2H), 7.93~7.97 (m, 1H), 8.05~8.07 (m, 1H), 8.38 (d, J=8.0 Hz, 1H), 8.69 (d, J=4.0 Hz, 1H), 9.06~9.08 (m, 1H), 12.73 (s, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 13.8, 19.3, 30.8, 70.0, 107.2, 114.8, 118.2, 118.3, 122.9, 123.3, 126.2, 128.0, 129.7, 134.0, 135.3, 137.5, 147.7, 151.0, 155.6, 162.8; IR (film) ν: 2958, 2921, 2846, 1667, 1524, 1491, 1389 cm-1; HRMS (ESI) calcd for C20H20BrN2O2 [M+H]+ 399.0703, found 399.0705.

    8-Butoxynaphthalen-1-amine (4): Green liquid (20 mg, 93% yield); 1H NMR (400 Hz, CDCl3, TMS) δ: 1.01 (t, J=8.0 Hz, 3H), 1.51~1.61 (m, 2H), 1.87~1.94 (m, 2H), 4.11 (t, J=8.0 Hz, 2H), 6.57 (d, J=4.0 Hz, 1H), 6.68 (d, J=4.0 Hz, 1H), 7.10 (d, J=8.0 Hz, 1H), 7.18~7.25 (m, 2H), 7.30 (d, J=8.0 Hz, 1H); 13C NMR (100 Hz, CDCl3, TMS) δ: 13.9, 19.5, 31.3, 68.5, 104.3, 109.6, 115.1, 116.9, 121.2, 125.6, 127.0, 137.3, 145.0, 157.2; IR (film) ν: 3052, 2962, 2864, 1593, 1401, 1299, 1242 cm-1; HRMS (ESI) calcd for C14H18NO [M+H]+ 216.1383, found 216.1380.

    Supporting Information UV, 1H NMR, 13C NMR spectra of compounds 3~4. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      For the application of functionalized 1-naphthylamine compounds, see: (a) Jurok, R.; Cibulka, R.; Dvořáková, H.; Hampl, F.; Hodačová, J. Eur. J. Org. Chem. 2010, 5217.(b) Jurok, R.; Hodačová, J.; Eigner, V.; Dvořáková, H.; Setnička, V.; Cibulka, R. Eur. J. Org. Chem. 2013, 7724.(c) Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O. Organometallics 2013, 32, 5136.(d) Dai, S.; Sui, X.; Chen, C. Chem. Commun. 2016, 52, 9113.(e) Lu, M.; Zhou, H.-S.; You, Q.-D.; Jiang, Z. J. Med. Chem. 2016, 59, 7305.(f) Jiang, Z.-Y.; Xu, L.-L.; Lu, M.-C.; Chen, Z.-Y.; Yuan, Z.-W.; Xu, X.-L.; Guo, X.-K.; Zhang, X.-J.; Sun, H.-P.; You, Q.-D. J. Med. Chem. 2015, 58, 6410.(g) Rosen, H.; Hajdu, R.; Silver, L.; Kropp, H.; Dorso, K.; Kohler, J.; Sundelof, J. G.; Huber, J.; Hammond, G. G. Jackson, J. J.; Gill, C. J.; Thompson, R.; Pelak, B. A.; Epstein-Toney, J. H.; Lankas, G.; Wilkening, R. R.; Wildonger, K. J.; Blizzard, T. A.; DiNinno, F. P.; Ratcliffe, R. W.; Heck, J. V.; Kozarich, J. W.; Hammond, M. L. Science 1999, 283, 703.(h) Oh, S.-J.; Hwang, S. J.; Jung, J.; Yu, K.; Kim, J.; Choi, J. Y.; Hartzell, H. C.; Roh, E. J.; Lee, C. J. Mol. Pharmacol. 2013, 84, 726.

    2. [2]

      For selected papers on C2-functionalizations of 1-naphthylamide derivatives, see: (a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.(b) Kim, B. S.; Jang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336.(c) Yip, K.-T.; Yang, D. Org. Lett. 2011, 13, 2134.(d) Wu, Y.; Choy, P. Y.; Mao, F.; Kwong, F. Y. Chem. Commun. 2013, 49, 689.(e) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2013, 355, 685.(f) Gao, Y.; Huang, Y.; Wu, W.; Huang, K.; Jiang, H. Chem. Commun. 2014, 50, 8370.(g) Iwasaki, M.; Iyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.; Li, Z.; Nishihara, Y. Chem.-Eur. J. 2014, 20, 2459.(h) Zhang, X.; Si, W.; Bao M.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4830.(Ⅰ) Das, R.; Kapur, M. J. Org. Chem. 2017, 82, 1114.(j) Li, Z.-L.; Sun, K.-K.; Cai, C. Org. Biomol. Chem. 2018, 16, 5433.

    3. [3]

      For selected papers on C4-functionalizations of 1-naphthylamide derivatives, see: (a) Li, J.-M.; Wang, Y.-H.; Yu, Y.; Wu, R.-B.; Weng, J.; Lu, G. ACS Catal. 2017, 7, 2661.(b) Liang, S.; Bolte, M.; Manolikakes, G. Chem.-Eur. J. 2017, 23, 96.(c) Bai, P.; Sun, S.; Li, Z.; Qiao, H.; Su, X.; Yang, F.; Wu, Y. Wu, Y. J. Org. Chem. 2017, 82, 12119.(d) Han, S.; Liang, A.; Ren, X.; Gao, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58, 4859.(e) You, G. Wang, K.; Wang, X.; Wang, G.; Sun, J.; Duan, G.; Xia, C. Org. Lett. 2018, 20, 4005.(f) Zhu, H.; Sun, S.; Qiao, H.; Yang, F.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2018, 20, 620.

    4. [4]

      (a) Huang, L.; Li, Q.; Wang, C.; Qi, C. J. Org. Chem. 2013, 78, 3030.(b) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78, 9689.

    5. [5]

      (a) Huang, L.; Sun, X.; Li, Q.; Qi, C. J. Org. Chem. 2014, 79, 6720.(b) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.(c) Rej, S.; Chatani, N. ACS Catal. 2018, 8, 6699.

    6. [6]

      (a) Li, X.; Gong, X.; Zhao, M.; Song, G.; Deng, J.; Li, X. Org. Lett. 2011, 13, 5808.(b) Wang, X.; Li, X.; Xiao, J.; Jiang, Y.; Li, X. Synlett 2012, 23, 1649.

    7. [7]

      (a) Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Org. Lett. 2014, 16, 1764.(b) Li, Z.; Sun, S.; Qiao, H.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18, 4594.(c) Pradhan, S.; De, P. B.; Punniyamurthy, T. J. Org. Chem. 2017, 82, 4883.

    8. [8]

      Odani, R.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 11045. doi: 10.1021/jo402078q

    9. [9]

      (a) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330.(b) Xiong, Y.-S.; Yu, Y.; Weng, J.; Lu, G. Org. Chem. Front. 2018, 5, 982.

    10. [10]

      (a) Guan, D.; Han, L.; Wang, L.; Song, H.; Chu, W.; Sun, Z. Chem. Lett. 2015, 44, 743.(b) Wang, L.; Yang, M.; Liu, X.; Song, H.; Han, L.; Chu, W.; Sun, Z. Appl. Organometal. Chem. 2016, 30, 680.(c) Song, H.; Liu, X.; Wang, C.; Qiao, J.; Chu, W.; Sun, Z. Asian J. Org. Chem. 2017, 6, 1693.

    11. [11]

      Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842. doi: 10.1021/ol402904d

    12. [12]

      Roy, S.; Pradhan, S.; Punniyamurthy, T. Chem. Commun. 2018, 54, 3899. doi: 10.1039/C8CC02158A

    13. [13]

      (a) Liu, B.; Shi, B.-F. Tetrahedron Lett. 2015, 56, 15.(b) Krylov, I. B.; Vil', V. A.; Terent'ev, A. O. Beilstein J. Org. Chem. 2015, 11, 92.

    14. [14]

      Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498. doi: 10.1021/acscatal.5b02344

    15. [15]

      Wei, D.; Zhu, X.; Niu, J.-L.; Song, M.-P. ChemCatChem 2016, 8, 1242.

    16. [16]

      (a) Cheng, B.; Lu, P.; Zhao, J.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 1704(in Chinese). (程彪, 陆鹏, 赵家金, 陆展, 有机化学, 2019, 39, 1704.)(b) Cheng, Z.; Xing, S.; Guo, J. Chin. J. Chem. 2019, 37, 457.

    17. [17]

      (a) Shao, Z.; Zhong, R.; Ferraccioli, R. Chin. J. Chem. 2019, 37.(b) Gu, Z.; Ji, S. Acta Chim. Sinica 2018, 76, 347(in Chinese). (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)

    18. [18]

      (a) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.(b) Han, J.-N.; Du, C.; Zhu, X.; Wang, Z.-L.; Zhu, Y.; Chu, Z.-Y.; Niu, J.-L.; Song, M.-P. Beilstein J. Org. Chem. 2018, 14, 2090.

    19. [19]

      Lan, J.; Xie, H.; Lu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2017, 19, 4279. doi: 10.1021/acs.orglett.7b01942

    20. [20]

      Lin, C.; Chen, Z.; Liu, Z.; Zhang, Y. Adv. Synth. Catal. 2018, 360, 519. doi: 10.1002/adsc.201701144

    21. [21]

      Zhang, T.; Zhu, H.; Yang, F.; Wu, Y.; Wu, Y. Tetrahedron 2019, 75, 1541. doi: 10.1016/j.tet.2019.02.002

    22. [22]

      Ueno, R.; Natsui, S.; Chatani, N. Org. Lett. 2018, 20, 1062. doi: 10.1021/acs.orglett.7b04020

    23. [23]

      Sauermann, N.; Meyer, T. H.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452. doi: 10.1021/jacs.7b11025

    24. [24]

      CCDC 1881977 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

    25. [25]

      (a) Huang, Y.; Liu, L.; Feng, W. ChemistrySelect 2016, 1, 630.(b) Zeng, M.; Du, Y.; Shao, L.; Qi, C.; Zhang, X.-M. J. Org. Chem. 2010, 75, 2556.(c) Liu, Q.; Xu, M.; Wang, Y.; Feng, R.; Yang, Z.; Zuo, S.; Qi, C.; Zeng, M. Int. J. Biol. Macromol. 2017, 105, 575.(d) Zhu, S. L.; Zhang, J. T.; Janjanam, J.; Vegesna, G.; Luo, F. T.; Tiwari, A.; Liu, H. Y. J. Mater. Chem. B 2013, 1, 1722.(e) Hirata, T.; Terai, T.; Komatsu, T.; Hanaoka, K.; Nagano, T. Bioorg. Med. Chem. Lett. 2011, 21, 6090.

    26. [26]

      Zhao, D.; Luo, H.; Chen, B.; Chen, W.; Zhang, G.; Yu, Y. J. Org. Chem. 2018, 83, 7860. doi: 10.1021/acs.joc.8b00734

    27. [27]

      (a) Guo, X.-K.; Zhang, L.-B.; Wei, D.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.(b) Tan, G.; He, S.; Huang, X.; Liao, X.; Cheng, Y.; You, J. Angew. Chem., Int. Ed. 2016, 55, 10414.(c) Kommagalla, Y.; Yamazaki, K.; Yamaguchi, T.; Chatani, N. Chem. Commun. 2018, 54, 1359.

    28. [28]

      Guo, X.-K.; Zhang, L.-B.; Wei, D.-H.; Niu, J.-L. Chem. Sci. 2015, 6, 7059. doi: 10.1039/C5SC01807B

  • Scheme 1  Preparation of deuterium labeled methoxylated 1-naphthylamide

    Scheme 2  Reaction scope of 1-naphthylamine derivatives

    Scheme 3  Removal the directing group

    Table 1.  Optimization of the reaction conditionsa

    Entry Cat. Oxidant Base Additive Yieldb/%
    1 Co(OAc)2 Ag2CO3 KOAc 32
    2 CoCl2 Ag2CO3 KOAc 12
    3 Co2(CO)8 Ag2CO3 KOAc 21
    4 Co(acac)2 Ag2CO3 KOAc NR
    5 Pd(OAc)2 Ag2CO3 KOAc NR
    6 Co(OAc)2 Ag2O KOAc 40
    7 Co(OAc)2 AgOAc KOAc 20
    8 Co(OAc)2 AgOTFA KOAc 23
    9 Co(OAc)2 Mn(OAc)2•2H2O KOAc 17
    10 Co(OAc)2 Mn(OAc)2 KOAc 61
    11 Co(OAc)2 Mn(OAc)2 Na2CO3 25
    12 Co(OAc)2 Mn(OAc)2 K2CO3 28
    13 Co(OAc)2 Mn(OAc)2 Cs2CO3 30
    14 Co(OAc)2 Mn(OAc)2 KOAc 43c
    15 Mn(OAc)2 KOAc 0
    16 Co(OAc)2 KOAc 0
    17 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NI 13
    18 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NOAc 21
    19 Co(OAc)2 Mn(OAc)2 KOAc n-Bu4NPF6 26
    20 Co(OAc)2 Mn(OAc)2 KOAc 18-Crown-6 38
    21 Co(OAc)2 Mn(OAc)2 KOAc 19d
    22 Co(OAc)2 Mn(OAc)2 KOAc 21e
    23 Co(OAc)2 Mn(OAc)2 KOAc 44 f
    24 Co(OAc)2 Mn(OAc)2 KOAc 13 g
    a Reaction conditions unless otherwise specified: 1 (0.1 mmol), catalyst (30 mol%), oxidant (2.0 equiv.), base (2.0 equiv.), additive (2.0 equiv.), MeOH (1 mL), 80 ℃ under air for 12 h. b Isolated yield. c The amount of KOAc was increased to 10 equiv. d Used toluene as the solvent and the volume ratio of MeOH and toluene was 1:1 (1.0 mL). e Used O-chlorotoluene as the solvent and the volume ratio of MeOH and O-chlorotoluene was 1:1 (1.0 mL). f The amount of Co(OAc)2 was reduced to 20 mol%. g The amount of Co(OAc)2 was reduced to 10 mol%.
    下载: 导出CSV

    Table 2.  Cobalt-catalyzed alkoxylation of 1-naphthylamine derivative with various alcoholsa

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  875
  • HTML全文浏览量:  115
文章相关
  • 发布日期:  2020-03-01
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-10-21
  • 网络出版日期:  2019-11-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章