Citation: Zhang Yunxi, Gao Huchuan, Zhang Chenrui, Sun Maosheng, Chen Yangjie, Zeng Lisheng, Huang Lan, Chen Peng, Huang Qianming, Pu Xiang. Advances in the Study of Structural Modification of Aspirin and Their Biological Activities[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 300-326. doi: 10.6023/cjoc201907055 shu

Advances in the Study of Structural Modification of Aspirin and Their Biological Activities

  • Corresponding author: Pu Xiang, puxiang@sicau.edu.cn
  • Received Date: 31 July 2019
    Revised Date: 20 October 2019
    Available Online: 7 February 2019

    Fund Project: the National Natural Science Foundation of China 21708028the Education Department of Sichuan Province 17ZA0301the Scientific Innovation Cultivation Project of Sichuan Province 2018080Project supported by the National Natural Science Foundation of China (No. 21708028), the Education Department of Sichuan Province (No. 17ZA0301) and the Scientific Innovation Cultivation Project of Sichuan Province (No. 2018080)

Figures(40)

  • Aspirin (ASP), the first synthetic drug, is widely used as a non steroidal anti-inflammatory drug. It displays a variety of biological activities, such as anti-thrombosis, anti-inflammatory, anti-tumor, etc. A lot of works about the synthesis and related activity evaluation of its derivatives were reported. There are four kinds of derivatization methods:skeleton derivatization, prodrug derivatization, twin derivatization and metal coordination derivatization. According to the different modification sites, skeleton derivatization could be further divided into C(1)-COOH site modification, C(1)-COOH site and C(2)-OAc site simultaneous modification, C(2)-OAc site modification and benzene ring modification. NO-ASP is the main method to prepare antithrombotic derivatives, and metal coordination modification is the main synthesis scheme of anticancer derivatives. The structure modification and bioactivity research of aspirin in recent twenty years and the synthetic routes of 353 aspirin derivatives and the pharmacological activities of some derivatives are described, which provides a reference for the further development of aspirin derivatives.
  • 加载中
    1. [1]

      Dreser, H. Pflugers Arch. 1899, 76, 306.  doi: 10.1007/BF01662127

    2. [2]

      Van, F. J.; Buytenhek, M.; Nugteren, D. H.; Van, D. A. Eur. J. Biochem. 1980, 109, 1.  doi: 10.1111/j.1432-1033.1980.tb04760.x

    3. [3]

      Vane, J. R. Nature (London), New Biol. 1971, 231, 232.  doi: 10.1038/newbio231232a0

    4. [4]

      Tatsuguchi, A.; Matsui, K.; Shinji, Y.; Gudis, K.; Tsukui, K.; Kishida, K.; Fukuda, Y.; Sugisaki, Y.; Tokunaga, A.; Tajiri, T.; Sakamoto, C. Hum. Pathol. 2004, 35, 488.  doi: 10.1016/j.humpath.2003.10.025

    5. [5]

      Denkert, C.; Winzer, K.; Hauptmann, S. Clin. Breast Cancer 2004, 4, 428.  doi: 10.3816/CBC.2004.n.006

    6. [6]

      Zelenay, S.; Veen, A. G.; Böttcher, J. P.; Snelgrove, K. J.; Rogers, N.; Acton, S. E.; Chakravarty, P.; Girotti, M. R.; Marais, R.; Quezada, S. A.; Sahai, E.; Sousa, C. R. Cell 2015, 162, 1257.  doi: 10.1016/j.cell.2015.08.015

    7. [7]

      Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y. M.; Velazquez-Martinez, C. A.; Boring, D.; Kashfi, K. Biochem. Pharmacol. 2012, 83, 715.  doi: 10.1016/j.bcp.2011.12.018

    8. [8]

      Pircher, J.; Fochler, F.; Czermak, T.; Mannell, H.; Kraemer, B. F.; Wörnle, M.; Sparatore, A.; Soldato, P.D.; Pohl, U.; Krötz, F. Arterioscler., Thromb., Vasc. Biol. 2012, 32, 2884.  doi: 10.1161/ATVBAHA.112.300627

    9. [9]

      Thomas, K.; Moody, T. W.; Jensen, R. T.; Tong, J.; Rayner, C. L.; Barnett, N. L.; Fairfull-Smith, K. E.; Ridnour, L. A.; Wink, D. A.; Bottle, S. E. Eur. J. Med. Chem. 2018, 147, 34.  doi: 10.1016/j.ejmech.2018.01.077

    10. [10]

      Zavodnik, I. B.; Lapshina, E.; Sudnikovich, E.; Boncler, M.; Luzak, B.; Róalski, M.; Heliñska, M.; Watala, C. Pharmacol. Rep. 2009, 61, 476.  doi: 10.1016/S1734-1140(09)70089-1

    11. [11]

      Zhang, Y.; Chen, S.; Wang, L.; Tang, X. Asian J. Chem. 2013, 25, 6550.  doi: 10.14233/ajchem.2013.14355

    12. [12]

      Roy, J.; Adili, R.; Kulmacz, R.; Holinstat, M.; Das, A. J. Pharmacol. Exp. Ther. 2016, 359, 134.  doi: 10.1124/jpet.116.234781

    13. [13]

      Li, Y. X.; Yu, L. B.; Zhang, Y. C.; Li, C. X. CN 1616404A 2005.

    14. [14]

      Liang, R. M.; Cheng, C. R.; Liu, Y.; Zheng, Z.; Xu, K.; Yang, R.; Ding, J.; Liang, X. Y. CN 108129468, 2018.

    15. [15]

      Plano, D.; Karelia, D.; Pandey, M.; Spallholz, J. E.; Amin, S. G.; Sharma, A. K. J. Med. Chem. 2016, 59, 1946.  doi: 10.1021/acs.jmedchem.5b01503

    16. [16]

      Moon, H. S.; Nam, S. I.; Kim, S. D.; Kim, D. Y.; Gwag, B. J.; Lee, Y. A.; Yoon, S. H. J. Pharm. Pharmacol. 2002, 54, 935.  doi: 10.1211/002235702760089054

    17. [17]

      Mancuso, R.; Ferlazzo, N.; Luca, G. D.; Amuso, R.; Piccionello, A. P.; Giofrè, S. V.; Navarra, M.; Gabriele, B. Med. Chem. Res. 2019, 28, 292.  doi: 10.1007/s00044-018-02284-3

    18. [18]

      Ayyadevara, S.; Bharill, P.; Dandapat, A.; Hu, C.; Khaidakov, M.; Mitra, S.; Shmookler Reis, R. J.; Mehta, J. L. Antioxid. Redox Signaling 2013, 18, 481.  doi: 10.1089/ars.2011.4151

    19. [19]

      Strong, R.; Miller, R. A.; Astle, C. M.; Floyd, R. A.; Flurkey, K.; Hensley, K. L.; Javors, M. A.; Leeuwenburgh, C.; Nelson, J. F.; Ongini, E.; Nadon, N. L.; Warner, H. R.; Harrison, D. E. Aging Cell 2008, 7, 641.  doi: 10.1111/j.1474-9726.2008.00414.x

    20. [20]

      Cha, B. C.; Lee, S. B. Arch. Pharmacal Res. 2000, 23, 116.  doi: 10.1007/BF02975499

    21. [21]

      Li, L.; Hsu, A.; Moore, P. K. Pharmacol. Ther. 2009, 123, 386.  doi: 10.1016/j.pharmthera.2009.05.005

    22. [22]

      Godo, S.; Sawada, A.; Saito, H.; Ikeda, S.; Enkhjargal, B.; Suzuki, K.; Tanaka, S.; Shimokawa, H. Arterioscler., Thromb., Vasc. Biol. 2016, 36, 97.  doi: 10.1161/ATVBAHA.115.306499

    23. [23]

      Liu, X.; El-Mahdy, M. A.; Boslett, J.; Varadharaj, S.; Hemann, C.; Abdelghany, T. M.; Ismail, R. S.; Little, S. C.; Zhou, D.; Thuy, L. T. T.; Kawada, N.; Zweier, J. L. Nat. Commun. 2017, 8, 1.  doi: 10.1038/s41467-016-0009-6

    24. [24]

      Jones, M.; Inkielewicz, I.; Medina, C.; Santos-Martinez, M. J.; Radomski, A.; Radomski, M. W.; Lally, M. N.; Moriarty, L. M.; Gaynor, J.; Carolan, C. G.; Khan, D.; O'Byrne, P.; Harmon, S.; Holland, V.; Clancy, J. M.; Gilmer, J. F. J. Med. Chem. 2009, 52, 6588.  doi: 10.1021/jm900561s

    25. [25]

      Xiao, M.; Yang, H.; Kleina, S. M.; Muenyib, C. M.; Stone, W. L.; Jiang, Y. L. Lett. Org. Chem. 2008, 5, 510.  doi: 10.2174/157017808785982257

    26. [26]

      Lazzarato, L.; Donnola, M.; Rolando, B.; Chegaev, K.; Marini, E.; Cena, C.; Stilo, A. D.; Fruttero, R.; Biondi, S.; Ongini, E.; Gasco, A. J. Med. Chem. 2009, 52, 5058.  doi: 10.1021/jm900587h

    27. [27]

      Zhou, Z.; Lai, Y. S.; Zhang, Y. H.; Ji, H.; Li, L. W.; Peng, S. X. Chin. J. Org. Chem. 2008, 28, 819 (in Chinese).
       

    28. [28]

      Lazzarato, L.; Chegaev, K.; Marini, E.; Rolando, B.; Borretto, E.; Guglielmo, S.; Joseph, S.; Stilo, A. D.; Fruttero, R.; Gasco, A. J. Med. Chem. 2011, 54, 5478.  doi: 10.1021/jm2004514

    29. [29]

      Xiang, G. Y.; Zhou, J.; Chen, S. Z.; Wu, J.; Luo, Z. J. Huazhong Univ. Sci. Technol. (Health Sci.) 2007, 36, 23 (in Chinese).  doi: 10.3870/j.issn.1672-0741.2007.01.007

    30. [30]

      Cena, C.; Lolli, M. L.; Lazzarato, L.; Guaita, E.; Morini, G.; Coruzzi, G.; McElroy, S. P.; Megson, I. L.; Fruttero, R.; Gasco, A. J. Med. Chem. 2003, 46, 747.  doi: 10.1021/jm020969t

    31. [31]

      Szőke, K.; Czompa, A.; Lekli, I.; Szabados-Fürjesi, P.; Herczeg, M.; Csávás, M.; Borbás, A.; Herczegh, P.; Tósaki, A. Eur. J. Pharm. Sci. 2019, 131, 159.  doi: 10.1016/j.ejps.2019.02.020

    32. [32]

      Larin, A. A.; Fershtat, L. L.; Ustyuzhanina, N. E.; Gening, M. L.; Nifantiev, N. E.; Makhova, N. N. Mendeleev Commun. 2018, 28, 595.  doi: 10.1016/j.mencom.2018.11.010

    33. [33]

      Ferioli, R.; Folco, G. C.; Ferretti, C.; Gasco, A. M.; Medana, C.; Fruttero, R.; Civelli, M.; Gasco, A. Br. J. Pharmacol. 1995, 114, 816.

    34. [34]

      Zhou, Z.; Jiang, L. Y.; Zhang, Y. H.; Ji, H.; Sun, Y.; Peng, S. X. Acta Pharm. Sin. 2006, 41, 1050 (in Chinese).  doi: 10.3321/j.issn:0513-4870.2006.11.005

    35. [35]

      Zhou, Z.; Jiang, L. Y.; Zhang, Y. H.; Ji, H.; Sun, Y.; Peng, S. X. Chin. J. Org. Chem. 2006, 26, 1403 (in Chinese).  doi: 10.3321/j.issn:0253-2786.2006.10.011

    36. [36]

      Velázquez, C. A.; Chen, Q.; Citro, M. L.; Keefer, L. K.; Knaus, E. E. J. Med. Chem. 2008, 51, 1954.  doi: 10.1021/jm701450q

    37. [37]

      Basudhar, D.; Bharadwaj, G.; Cheng, R. Y.; Jain, S.; Shi, S.; Heinecke, J. L.; Holland, R. L.; Ridnour, L. A.; Caceres, V. M.; Spadari-Bratfisch, R. C.; Paolocci, N.; Velázquez-Martínez, C. A.; Wink, D. A.; Miranda, K. M. J. Med. Chem. 2013, 56. 7804.  doi: 10.1021/jm400196q

    38. [38]

      Samad, M. K.; Hawaiz, F. E. Bioorg. Chem. 2019, 85, 431.  doi: 10.1016/j.bioorg.2019.01.014

    39. [39]

      Ispir, E.; Ikiz, M.; Inan, A.; Sunbul, A. B.; Tayhan, S. E.; Bilgin, S.; Kose, M.; Elmastas, M. J. Mol. Struct. 2019, 1182, 63.  doi: 10.1016/j.molstruc.2019.01.029

    40. [40]

      Pradeepa, S. M.; Naik, H. S. B.; Kumar, B. V.; Priyadarsini, K. I.; Barik, A.; Prabhakara, M. C. Spectrochim. Acta, Part A 2015, 141, 34.  doi: 10.1016/j.saa.2015.01.019

    41. [41]

      Ho, B. K.; Ngaini, Z.; Neilsen, P. M.; Hwang, S. S.; Linton, R. E.; Kong, E. L.; Lee, B. K. J. Chem. 2017, 2017, 1.

    42. [42]

      Ngaini, Z.; Mortadza, N. A. Nat. Prod. Res. 2019, 33, 3507.  doi: 10.1080/14786419.2018.1486310

    43. [43]

      Nordin, N. A.; Chai, T. W.; Tan, B. L.; Choi, C. L.; Halim, A. N. A.; Hussain, H.; Ngaini, Z. J. Chem. 2017, DOI: 10.1155/2017/2378186.  doi: 10.1155/2017/2378186

    44. [44]

      Ngaini, Z.; Arif, M. A. M.; Hussain, H.; Mei, E. S.; Tang, D.; Halimatulzahrah, D.; Kamaluddin, A. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1.  doi: 10.1080/10426507.2011.562398

    45. [45]

      Zhen, X.; Zong, M.; Gao, S.; Cao, Y.; Jiang, L.; Chen, S.; Wang, K.; Sun, S.; Peng, H.; Bai, Y.; Li, S. PLoS One 2014, 9, 1.

    46. [46]

      Vannini, F.; MacKessack-Leitch, A. C.; Eschbach, E. K.; Chattopadhyay, E. K.; Kodela, R.; Kashfi, K. Bioorg. Med. Chem. Lett. 2015, 25, 4677.  doi: 10.1016/j.bmcl.2015.08.023

    47. [47]

      Kodela, R.; Chattopadhyay, M.; Kashfi, K. ACS Med. Chem. Lett. 2012, 3, 257.  doi: 10.1021/ml300002m

    48. [48]

      Lazzarato, L.; Donnola, M.; Rolando, B.; Marini, E.; Cena, C.; Coruzzi, G.; Guaita, E.; Morini, G.; Fruttero, R.; Gasco, A.; Biondi, S.; Ongini, E. J. Med. Chem. 2008, 51, 1894.  doi: 10.1021/jm701104f

    49. [49]

      Bateman, L. A.; Zaro, B. W.; Miller, S. M.; Pratt, M. R. J. Am. Chem. Soc. 2013, 135, 14568.  doi: 10.1021/ja408322b

    50. [50]

      Lazzarato, L.; Cena, C.; Rolando, B.; Marini, E.; Lolli, M. L.; Guglielmo, S.; Guaita, E.; Morini, G.; Coruzzi, G.; Fruttero, R.; Gasco, A. Bioorg. Med. Chem. 2011, 19, 5852.  doi: 10.1016/j.bmc.2011.08.018

    51. [51]

      Aguiar, R. P.; Aldawsari, F. S.; Wiirzler, L. A. M.; Silva-Filho, S. E.; Silva-Comar, F. M. S.; Bersani-Amado, C. A.; Velázquez-Martínez, C. A.; Cuman, R. K. N. Curr. Pharm. Des. 2017, 23, 6841.

    52. [52]

      Huang, X. B.; Wu, G. S.; Ke, L. Y.; Zhou, X. G.; Wang, Y. H.; Luo, H. R. Molecules 2018, 23, 1359.  doi: 10.3390/molecules23061359

    53. [53]

      Alagha, A.; Moman, E.; Adamo, M. F. A.; Nolan, K. B.; Chubb, A. J. Bioorg. Med. Chem. Lett. 2009, 19, 4213.  doi: 10.1016/j.bmcl.2009.05.120

    54. [54]

      Aldawsari1, F. S.; Elshenawy, O. H.; Gendy, M. A. M. E; Aguayo-Ortiz, R.; Baksh, S.; El-Kadi, A. O. S.; Velazquez-Martınez, C. A. J. Enzyme Inhib. Med. Chem. 2014, 30, 884.

    55. [55]

      Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Expert Opin. Drug Delivery 2010, 7, 479.  doi: 10.1517/17425240903579971

    56. [56]

      Peng, S. Q.; Zhao, M.; Wu, J. H.; Wang, Y. J.; Ma, H. P. CN 104211763, 2014

    57. [57]

      Hussain, M. A.; Abbas, K.; Lodhi, B. A.; Sher, M.; Ali, M.; Tahir, M. N.; Tremel, W.; Iqbal, S. Arabian J. Chem. 2017, 10, 1579.

    58. [58]

      Dasgupta, Q.; Movva, S.; Chatterjee, K.; Madras, K. Int. J. Pharm. 2017, 528, 732.  doi: 10.1016/j.ijpharm.2017.06.065

    59. [59]

      Jacob, J. N.; Tazawa, M. J. Bioorg. Med. Chem. Lett. 2012, 22, 3168.  doi: 10.1016/j.bmcl.2012.03.053

    60. [60]

      Huang, G.; Cheng, H.; Liu, Y.; Hu, J. Saudi Pharm. J. 2018, 26, 263.  doi: 10.1016/j.jsps.2017.12.001

    61. [61]

      Li, B. Q.; Li, N. G.; Feng, F.; Tang, Y. P.; Duan, J. A. J. China Pharm. Univ. 2009, 40, 486 (in Chinese).
       

    62. [62]

      Li, J. Y.; Liu, X. W.; Yang, Y. J.; Ma, N.; Sun, X. J.; Li, S. H.; Qin, Z.; Du, W. B.; Jiao, Z. H. CN 105796575, 2016.

    63. [63]

      Li, J.; Yu, Y.; Wang, Q.; Zhang, J.; Yang, Y.; Li, B.; Zhou, X.; Niu, J.; Wei, X.; Liu, X.; Liu, Z. Med. Chem. Res. 2012, 21, 995.  doi: 10.1007/s00044-011-9609-1

    64. [64]

      Zhu, Y.; Fu, J.; Shurlknight, K. L.; Soroka, D. K.; Hu, Y.; Chen, X.; Sang, S. J. Med. Chem. 2015, 58, 6494.  doi: 10.1021/acs.jmedchem.5b00536

    65. [65]

      Sharma, A. K.; Sk, U. S.; Gimbor, M. A.; Hengst, J. A.; Wang, X.; Yun, J.; Amin, S. Eur. J. Med. Chem. 2010, 45, 4149.  doi: 10.1016/j.ejmech.2010.06.005

    66. [66]

      Moriarty, L. M.; Lally, M. N.; Carolan, C. G.; Jones, M.; Clancy, J. M.; Gilmer, J. F. J. Med. Chem. 2008, 51, 7991.  doi: 10.1021/jm801094c

    67. [67]

      Gao, H.; Yang, X. H.; Gu, X. F.; Zhu, Y. Z. Bioorg. Med. Chem. Lett. 2016, 26, 4650.  doi: 10.1016/j.bmcl.2016.08.058

    68. [68]

      Bednarczyk-Cwynar, B.; Wachowiak, N.; Szulc, M.; Kaminska, E.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Zaprutko, L.; Mikolajczak, P. L. Front. Pharmacol. 2016, 7, 1.

    69. [69]

      He, L. Q.; Chen, W. Z.; Wang, X. S. Chin. J. Med. Chem. 2011, 21, 32 (in Chinese).
       

    70. [70]

      Zhu, Y.; Wang, F.; Zhao, Y.; Wang, P.; Sang, S. Sci. Rep. 2017, 7, 40119  doi: 10.1038/srep40119

    71. [71]

      Shao, J. W.; Tang, Q.; Liu, Y. J.; Yang, X. CN 105111271, 2015.

    72. [72]

      Ma, M. H.; Wu, X. H.; He, Y.; Huang, W. J. Sichuan Univ. (Med. Sci. Ed.) 2011, 42, 494 (in Chinese).
       

    73. [73]

      Zheng, H.; Wei, Z.; Xin, G.; Ji, C.; Wen, L.; Xia, Q.; Niu, H.; Huang, W. Bioorg. Med. Chem. Lett. 2016, 26, 3364.  doi: 10.1016/j.bmcl.2016.05.032

    74. [74]

      Chen, Z.; Luo, Y.; Fang, A.; Fan, C.; Zeng, C. Turk. J. Chem. 2018, 42, 929.

    75. [75]

      Lu, S.; Obianom, O. N.; Ai, Y. Bioorg. Med. Chem. Lett. 2018, 28, 2869.  doi: 10.1016/j.bmcl.2018.07.032

    76. [76]

      Lu, S.; Obianom, O. N.; Ai, Y. MedChemComm 2018, 9, 1722.  doi: 10.1039/C8MD00284C

    77. [77]

      Huang, B.; Du, D.; Zhang, R.; Wu, X.; Xing, Z.; He, Y.; Huang, W. Bioorg. Med. Chem. Lett. 2012, 22, 7330.  doi: 10.1016/j.bmcl.2012.10.086

    78. [78]

      Lin, L.; Wu, F.; Liang, J. Chin. Chem. Lett. 2013, 24, 723.  doi: 10.1016/j.cclet.2013.05.021

    79. [79]

      Kern, S.; Skoog, I.; Östling, S.; Kern, J.; Börjesson-Hanson, A. BMJ Open. 2012, 2, 1288.

    80. [80]

      Berk, M.; Dean, O.; Drexhage, H.; McNeil, J. J.; Moylan, S.; Neil, A. O.; Davey, C. G.; Sanna, L.; Maes, M. BMC Med. 2013, 11, 74.  doi: 10.1186/1741-7015-11-74

    81. [81]

      He, D.; Ma, J.; Shi, X.; Zhao, C.; Hou, M.; Guo, Q.; Ma, S.; Li, X.; Zhao, P.; Liu, W.; Yang, Z.; Mou, J.; Song, P.; Zhang, Y.; Li, J. Chem. Pharm. Bull. 2014, 62, 967.  doi: 10.1248/cpb.c14-00329

    82. [82]

      Liu, Z.; Wang, X.; Zhang, H.; Zhang, S.; Li, Y.; Liu, L.; Peng, D. Med. Chem. Res. 2017, 26, 672.  doi: 10.1007/s00044-017-1787-z

    83. [83]

      Chaturvedi, D.; Dwivedi, P. K.; Chaturvedi, A. K.; Mishra, N.; Siddiqui, H. H.; Mishra, Y. Med. Chem. Res. 2015, 24, 2799.  doi: 10.1007/s00044-015-1331-y

    84. [84]

      Yan, B. C.; Park, J. H.; Shin, B. N.; Ahn, J. H.; Kim, I. H.; Lee, J. C.; Yoo, K. Y.; Hwang, I. K.; Choi, J. H.; Park, J. H.; Lee, Y. L.; Suh, H. W.; Jun, J. G.; Kwon, Y. G.; Kim, Y. M.; Kwon, S. H.; Her, S.; Kim, J. S.; Hyun, B. H.; Kim, C. K.; Cho, J. H.; Lee, C. H.; Won. M. H. PLoS One 2013, 8, 1.

    85. [85]

      Dasari, S.; Tchounwou, P. B. Eur. J. Pharmacol. 2014, 740, 364.  doi: 10.1016/j.ejphar.2014.07.025

    86. [86]

      Trudu, F.; Amato, F.; Vanhara, P.; Pivetta, T.; Pena-Mendez, E. M.; Havel, J. J. Appl. Biomed. 2015, 13, 79.  doi: 10.1016/j.jab.2015.03.003

    87. [87]

      Rubner, G.; Bensdorf, K.; Wellner, A.; Bergemann, S.; Ott, I.; Gust, R. Eur. J. Med. Chem. 2010, 45, 5157.  doi: 10.1016/j.ejmech.2010.08.028

    88. [88]

      Obermoser, V.; Baecker, D.; Schuster, C.; Braun, V.; Kircherb, B.; Gust, R. Dalton Trans. 2018, 47, 4341.  doi: 10.1039/C7DT04790H

    89. [89]

      Ott, I.; Kircher, B.; Bagowski, C. P.; Vlecken, D. H. W.; Ott, E. B.; Will, J.; Bensdorf, K.; Sheldrick, W. S.; Gust, R. Angew. Chem., Int. Ed. 2009, 48, 1160.  doi: 10.1002/anie.200803347

    90. [90]

      Shi, X.; Fang, H.; Guo, Y.; Yuan, H.; Guo, Z.; Wang, X. J. Inorg. Biochem. 2019, 190, 38.  doi: 10.1016/j.jinorgbio.2018.10.003

    91. [91]

      Wu, X. W.; Zheng, Y.; Wang, F. X.; Cao, J. J.; Zhang, H.; Zhang, D. Y.; Tan, C. P.; Ji, L. N.; Mao, Z. W. Chem.-Eur. J. 2019, 25, 7012.  doi: 10.1002/chem.201900851

    92. [92]

      Weninger, A.; Baecker, D.; Obermoser, V.; Egger, D.; Wurst, K.; Gust, R. Int. J. Mol. Sci. 2018, 19, 1612.  doi: 10.3390/ijms19061612

    93. [93]

      Rubner, G.; Bensdorf, K.; Wellner, A.; Kircher, B.; Bergemann, S.; Ott, I.; Gust, R. J. Med. Chem. 2010, 53, 6889.  doi: 10.1021/jm101019j

    94. [94]

      Ashraf, A.; Hanif, M.; Kubanik, M.; Sohnel, T.; Jamieson, S. M. F.; Bhattacharyya, A.; Hartinger, C. G. J. Organomet. Chem. 2017, 837, 31.

  • 加载中
    1. [1]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    2. [2]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    5. [5]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    15. [15]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    16. [16]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

Metrics
  • PDF Downloads(116)
  • Abstract views(9420)
  • HTML views(2647)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return