Citation: Shi Zhan, Nie Kerui, Liu Chang, Zhang Mingzhi, Zhang Weihua. Biological Activities of 3-(5-Oxazolyl)indole Natural Products and Advances on Synthesis of Its Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(2): 327-338. doi: 10.6023/cjoc201907047 shu

Biological Activities of 3-(5-Oxazolyl)indole Natural Products and Advances on Synthesis of Its Derivatives

  • Corresponding author: Zhang Mingzhi, mzzhang@njau.edu.cn Zhang Weihua, zhwh@njau.edu.cn
  • Received Date: 28 July 2019
    Revised Date: 3 October 2019
    Available Online: 7 February 2019

    Fund Project: the National Key R&D Program of China 2018YFC1602804the Jiangsu Provincial Science Foundation for Youths BK20160734the Fundamental Research Funds for the Central Universities KYTZ201604the National Natural Science Foundation of China 21602110Project supported by the National Natural Science Foundation of China (No. 21602110), the National Key R&D Program of China (No. 2018YFC1602804), the Jiangsu Provincial Science Foundation for Youths (No. BK20160734) and the Fundamental Research Funds for the Central Universities (Nos. KYTZ201604, KYLH201908)the Fundamental Research Funds for the Central Universities KYLH201908

Figures(32)

  • 3-(5-Oxazolyl)indole-type natural products such as pimprinine and streptochlorin, widely exist in marine microorganism, because of their diverse biological activity, 3-(5-oxazolyl)indoles show good research and development potential in the field of medicine and pesticide. Numerous studies have been performed to synthesize 3-(5-oxazolyl)indole-type natural products, in which the construction of indole ring and oxazole ring is the most important part. In this paper, the reported natural products with 3-(5-oxazolyl)indole skeleton structure and their biological activities are summarized, and the synthetic methods for 3-(5-oxazolyl)indole skeleton and some of their mechanism are also reviewed. The application prospect of 3-(5-oxazol-yl)indole as a dominant active structure in the future was discussed.
  • 加载中
    1. [1]

      Zhang, M. Z.; Chen, Q.; Yang, G. F. Eur. J. Med. Chem. 2015, 89, 421.  doi: 10.1016/j.ejmech.2014.10.065

    2. [2]

      Li, Q. X.; Shi, X. F.; Huang, Z.; Tian, X. P.; Wang, F. Z. J. Trop. Oceanogr. 2013, (1), 35 (in Chinese).  doi: 10.3969/j.issn.1009-5470.2013.01.005

    3. [3]

      Bhate, D. S.; Hulyalkar, R. K.; Menon, S. K. Experientiu 1960, 16, 504.  doi: 10.1007/BF02158365

    4. [4]

      Bhate, D. S.; Ambekar, G. R.; Bhatnagar, K. K.; K., H. R. Hind. Antibiot. Bull. 1961, 4, 139.

    5. [5]

      Joshi, B. S.; Taylor, W. I.; Bhate, D. S.; Karmarkar, S. S. Tetrahedron 1963, 19, 1437.  doi: 10.1016/S0040-4020(01)98569-2

    6. [6]

      Koyama, Y.; Yokose, K.; Dolby, L. J. Agric. Biol. Chem. 1981, 45, 1285.

    7. [7]

      Naik, S. R.; Harindran, J.; Varde, A. B. J. Biotechnol. 2001, 88, 1.  doi: 10.1016/S0168-1656(01)00244-9

    8. [8]

      Roy, S.; Haque, S.; Gribble, G. W. Synthesis 2006, 3948.

    9. [9]

      Khan, S.; Ahmed, M. S.; Arakawa, O.; Onoue, Y. J. J. Aquacult. Bamidgeh. 1995, 47, 137.

    10. [10]

      Khan, S.; Arakawa, O.; Onoue, Y. Phycologia 1996, 35, 239.  doi: 10.2216/i0031-8884-35-3-239.1

    11. [11]

      Pettit, G. R.; Knight, J. C.; Herald, D. L.; Davenport, R.; Pettit, R. K.; Tucker, B. E.; Schmidt, J. M. J. Nat. Prod 2002, 65, 1793.  doi: 10.1021/np020173x

    12. [12]

      Miao, Y. P.; Wen, R.; Hitoshi, A.; Zhou, P. G. Acta Pharm. Sinica 2004, 39, 37.

    13. [13]

      Watanabe, H.; Amano, S.; Yoshida, J.; Takase, Y.; Miyadoh, S.; Sasaki, T.; Hatsu, M.; Takeuchi, Y.; Komada, Y. Meiji Seika Kenkyu Nenpo 1988, 27, 55.

    14. [14]

      Shin, H. J.; Jeong, H. S.; Lee, H. S.; Park, S. K.; Kim, H. M.; Kwon, H. J. J. Microbiol. Biotechnol. 2007, 17, 1403.

    15. [15]

      Romero, F. A.; Du, W.; Hwang, I.; Rayl, T. J.; Kimball, F. S.; Leung, D.; Hoover, H. S.; Apodaca, R. L.; Breitenbucher, J. G.; Cravatt, B. F.; Boger, D. L. J. Med. Chem. 2007, 50, 1058.  doi: 10.1021/jm0611509

    16. [16]

      Shin, D. Y.; Shin, H. J.; Kim, G. Y.; Cheong, J.; Choi, I. W.; Kim, S. K.; Moon, S. K.; Kang, H. S.; Choi, Y. H. J. Microbiol. Biotechnol. 2008, 18, 1862.

    17. [17]

      Shim, D. W.; Shin, H. J.; Han, J. W.; Ji, Y. E.; Jang, C. H.; Koppula, S.; Kang, T. B.; Lee, K. H. Toxicol. Appl. Pharm. 2015, 284, 227.  doi: 10.1016/j.taap.2015.02.006

    18. [18]

      Takahashi, S.; Matsunaga, T.; Hasegawa, C.; Saito, H.; Fujita, D.; Kiuchi, F.; Tsuda, Y. Chem. Pharm. Bull. 1998, 46, 1527.  doi: 10.1248/cpb.46.1527

    19. [19]

      Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A. M. Z. J. Org. Chem. 2005, 70, 5840.  doi: 10.1021/jo050303h

    20. [20]

      Miao, Y. P. Ph.D. Dissertation, Fudan University, Shanghai, 2003 (in Chinese).

    21. [21]

      Diaye, N.; Guella, G.; Mancini, I.; Pietra, F. Tetrahedron Lett. 1996, 37, 3049.  doi: 10.1016/0040-4039(96)00466-2

    22. [22]

      Lindquist, N.; Fenical, W.; Vanduyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303.  doi: 10.1021/ja00006a060

    23. [23]

      Nicolaou, K. C.; Chen, D. Y.; Huang, X.; Ling, T.; Bella, M.; Snyder, S. A. J. Am. Chem. Soc. 2004, 126, 12888.  doi: 10.1021/ja040092i

    24. [24]

      Somei, M.; Sato, H.; Komura, N.; Kaneko, C. Heterocycles 1985, 23, 1101.  doi: 10.3987/R-1985-05-1101

    25. [25]

      Wipf, P.; Yokokawa, F. Tetrahedron Lett. 1998, 39, 2223.  doi: 10.1016/S0040-4039(98)00231-7

    26. [26]

      Wipf, P.; Methot, J. L. Org. Lett. 2001, 3, 1261.  doi: 10.1021/ol0157196

    27. [27]

      Bagley, M. C.; Hind, S. L.; Moody, C. J. Tetrahedron Lett. 2000, 41, 6897.  doi: 10.1016/S0040-4039(00)01120-5

    28. [28]

      Kreisberg, J. D.; Magnus, P.; McIver, E. G. Tetrahedron Lett. 2001, 42, 627.  doi: 10.1016/S0040-4039(00)02023-2

    29. [29]

      Roy, S.; Eastman, A.; Gribble, G. W. Org. Biomol. Chem. 2006, 4, 3228.  doi: 10.1039/b607504e

    30. [30]

      Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604.  doi: 10.1021/jo00066a004

    31. [31]

      Bergman, J.; Backvall, J. E.; Lindstrom, J. O. Tetrahedron 1973, 29, 971.  doi: 10.1016/0040-4020(73)80047-X

    32. [32]

      Deng, W. P.; Nam, G.; Fan, J. F.; Kirk, K. L. J. Org. Chem. 2003, 68, 2798.  doi: 10.1021/jo020731c

    33. [33]

      Jiang, B.; Gu, X. H. Bioorgan. Med. Chem. 2000, 8, 363.  doi: 10.1016/S0968-0896(99)00290-4

    34. [34]

      Fresneda, P. M.; Molina, P.; Sanz, M. A. Synlett 2001, 218.

    35. [35]

      Radspieler, A. Ph.D. Dissertation, Humboldt University, Berlin, 2000.

    36. [36]

      Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1977, 42, 1213.  doi: 10.1021/jo00427a024

    37. [37]

      Kumar, D.; Sundaree, S.; Patel, G.; Rao, V. S. Tetrahedron Lett 2008, 49, 867.  doi: 10.1016/j.tetlet.2007.11.173

    38. [38]

      Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487.  doi: 10.1021/jo00133a053

    39. [39]

      oser, G. F. Adv. Heterocycl. Chem. 2004, 86, 225.  doi: 10.1016/S0065-2725(03)86004-X

    40. [40]

      Kelly, T. R.; Fu, Y.; Xie, R. L. Tetrahedron Lett. 1999, 40, 1857.  doi: 10.1016/S0040-4039(99)00074-X

    41. [41]

      Doyle, K. J.; Moody, C. J. Synthesis 1994, 1021.

    42. [42]

      Brain, C. T.; Paul, J. M. Synlett 1999, 1642.

    43. [43]

      Nishida, A.; Fuwa, M.; Naruto, S.; Sugano, Y.; Saito, H.; Nakagawa, M. Tetrahedron Lett. 2000, 41, 4791.  doi: 10.1016/S0040-4039(00)00677-8

    44. [44]

      Liu, S. F.; Wu, Q. G.; Schmider, H. L.; Aziz, H.; Hu, N. X.; Popovic, Z.; Wang, S. N. J. Am. Chem. Soc. 2000, 122, 3671.  doi: 10.1021/ja9944249

    45. [45]

      Ketcha, D. M.; Gribble, G. W. J. Org. Chem. 1985, 50, 5451.  doi: 10.1021/jo00350a001

    46. [46]

      Miyake, F.; Hashimoto, M.; Tonsiengsom, S.; Yakushijin, K.; Horne, D. A. Tetrahedron 2010, 66, 4888.  doi: 10.1016/j.tet.2010.03.109

    47. [47]

      Lade, D. M.; Krishna, V. S.; Sriram, D.; Rode, H. B. Chemistryselect 2017, 2, 1250.  doi: 10.1002/slct.201601821

    48. [48]

      Dhar, T. G. M.; Shen, Z. Q.; Fleener, C. A.; Rouleau, K. A.; Barrish, J. C.; Hollenbaugh, D. L.; Iwanowicz, E. J. Bioorg. Med. Chem. Lett. 2002, 12, 3305.  doi: 10.1016/S0960-894X(02)00748-5

    49. [49]

      Van Leusen, D.; Hessen, B. Organometallics 2001, 20, 224.  doi: 10.1021/om000678n

    50. [50]

      Houwing, H. A.; Wildeman, J.; Van Leusen, A. M. J. Heterocycl. Chem. 1981, 18, 1133.  doi: 10.1002/jhet.5570180615

    51. [51]

      Chakrabarty, M.; Basak, R.; Harigaya, Y.; Takayanagi, H. Tetrahedron 2005, 61, 1793.  doi: 10.1016/j.tet.2004.12.022

    52. [52]

      Zhang, M. Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Yang, G. F.; Clough, J. Eur. J. Med. Chem. 2012, 53, 283.  doi: 10.1016/j.ejmech.2012.04.012

    53. [53]

      Boto, A.; Ling, M.; Meek, G.; Pattenden, G. Tetrahedron Lett. 1998, 39, 8167.  doi: 10.1016/S0040-4039(98)01819-X

    54. [54]

      Barrett, G. M.; Kohrt, J. T. Synlett 1995, 415.

    55. [55]

      Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Synthesis 1987, 693.

    56. [56]

      Kelly, T. R.; Lang, F. R. J. Org. Chem. 1996, 61, 4623.  doi: 10.1021/jo960433d

    57. [57]

      Primas, N.; Bouillon, A.; Lancelot, J. C.; Rault, S. Tetrahedron 2009, 65, 6348.  doi: 10.1016/j.tet.2009.06.023

    58. [58]

      Besselievre, F.; Mahuteau-Betzer, F.; Grierson, D. S.; Piguel, S. J. Org. Chem. 2008, 73, 3278.  doi: 10.1021/jo7027135

    59. [59]

      Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F. Chem Commun 2008, 1241.

    60. [60]

      Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.  doi: 10.1021/ja075802+

    61. [61]

      Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970.  doi: 10.1016/j.tet.2006.12.068

    62. [62]

      Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379.

    63. [63]

      Del Zotto, A.; Amoroso, F.; Baratta, W.; Rigo, P. Eur. J. Org. Chem. 2009, 110.

    64. [64]

      Liu, W. J.; Xie, Y. X.; Yun, L. A.; Li, J. H. Synthesis 2006, 860.

    65. [65]

      Alimardanov, A.; de Vondervoort, L. S. V.; de Vries, A. H. M.; de Vries, J. G. Adv. Synth. Catal. 2004, 346, 1812.  doi: 10.1002/adsc.200404210

    66. [66]

      Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973.  doi: 10.1021/ol0263907

    67. [67]

      Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.; Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390.  doi: 10.1021/jm9800853

    68. [68]

      Lancelot, J. C.; Prunier, H.; Robba, M.; Delagrange, P.; Renard, P.; Adam, G. EP623620 A1, 1994.

    69. [69]

      Zhang, F. Z.; Greaney, M. F. Org. Lett. 2010, 12, 4745.  doi: 10.1021/ol1019597

    70. [70]

      Wu, Y. D.; Peng S.; Ou-yang, Y. J.; Qian, P. C.; He, W. M.; Xiang, J. N. Acta Chim. Sinica 2012, 70, 47 (in Chinese).

    71. [71]

      Zhou, H. P.; Gai, K.; Lin, A. J.; Xu, J. Y.; Wu, X. M.; Yao, H. Q. Org. Biomol. Chem. 2015, 13, 1.  doi: 10.1039/C5OB90001H

    72. [72]

      (a) Zhu, Y. P.; Fei, Z.; Liu, M. C.; Jia, F. C.; Wu, A. X. Org. Lett. 2013, 15, 378.
      (b) Xiang, J. C.; Wang, J. G.; Wang, M.; Meng, X. G.; Wu, A. X. Tetrahedron 2014, 70, 7470.

    73. [73]

      Liu, B.; Li, R.; Li, Y. A.; Li, S. Y.; Yu, J.; Zhao, B. F.; Liao, A. C.; Wang, Y.; Wang, Z. W.; Lu, A. D.; Liu, Y. X.; Wang, Q. M. J. Agric. Food Chem. 2019, 67, 1795.  doi: 10.1021/acs.jafc.8b06175

    74. [74]

      Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.  doi: 10.1021/jo00293a053

    75. [75]

      Konopelski, J. P.; Hottenroth, J. M.; Oltra, H. M.; Veliz, E. A.; Yang, Z. C. Synlett 1996, 609.

    76. [76]

      Vedejs, E.; Barda, D. A. Org. Lett. 2000, 2, 1033.  doi: 10.1021/ol005548p

    77. [77]

      Schöllkopf, U.; Schröder, R. Angew. Chem., Int. Ed. 1971, 10, 333.  doi: 10.1002/anie.197103331

    78. [78]

      Batcho, A. D.; Leimgruber, W. Org. Synth. 1985, 63, 214.  doi: 10.15227/orgsyn.063.0214

    79. [79]

      Amat, M.; Hadida, S.; Pshenichnyi, G.; Bosch, J. J. Org. Chem. 1997, 62, 3158.  doi: 10.1021/jo962169u

    80. [80]

      Radspieler, A.; Liebscher, J. Synthesis 2001, 745.

    81. [81]

      Adreani, A.; Bonazzi, D.; Rambaldi, M.; Guarnieri, A. J. Med. Chem. 1977, 20, 1344.  doi: 10.1021/jm00220a023

    82. [82]

      Olah, G. A.; Arranaghi, M.; Prakash, G. K. Synthesis 1983, 8, 636.

    83. [83]

      Yang, C. J.; Chen, X. Y.; Tang, T.; He, Z. J. Org. Lett. 2016, 18, 1486  doi: 10.1021/acs.orglett.6b00456

    84. [84]

      Liu, X. Z.; Zhou, Y. X.; Chen, G. J.; Yang, Z. Q.; Li, Q.; Liu, P. J. Org. Biomol. Chem. 2018, 16, 3572.  doi: 10.1039/C8OB00833G

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(49)
  • Abstract views(4251)
  • HTML views(778)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return