微波辐射下磷酸改性铌酸催化的香豆素修饰吡唑并[3, 4-b]吡啶衍生物的高效合成

林伟 庄苍伟 胡秀秀 杨凤丽

引用本文: 林伟, 庄苍伟, 胡秀秀, 杨凤丽. 微波辐射下磷酸改性铌酸催化的香豆素修饰吡唑并[3, 4-b]吡啶衍生物的高效合成[J]. 有机化学, 2020, 40(2): 408-416. doi: 10.6023/cjoc201907026 shu
Citation:  Lin Wei, Zhuang Cangwei, Hu Xiuxiu, Yang Fengli. Efficient Synthesis of Coumarin-Fused Pyrazolo[3, 4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 408-416. doi: 10.6023/cjoc201907026 shu

微波辐射下磷酸改性铌酸催化的香豆素修饰吡唑并[3, 4-b]吡啶衍生物的高效合成

    通讯作者: 林伟, linwei@jsut.edu.cn; 杨凤丽, yangfengli1984@hotmail.com
  • 基金项目:

    国家自然科学基金(No.21502074)、江苏省青蓝工程和江苏省研究生实践创新计划(No.SJCX19_0766)资助项目

摘要: 香豆素和吡唑并[3,4-b]吡啶骨架广泛存在于具有生物活性的天然化合物中,在药物化学中也被广泛用作药物核心单元,具有极其重要的作用.以磷酸改性铌酸作为催化剂,通过微波辐射下醛、香豆素衍生物、5-氨基吡唑的三组分反应一锅法高产率地合成一系列香豆素修饰的吡唑并[3,4-b]吡啶衍生物.该反应一步完成,具有催化剂和溶剂对环境友好,操作简单等优点.产物的结构经红外光谱、核磁共振谱及高分辨质谱予以确定.

English

  • 杂环化合物广泛存在于自然界中, 许多杂环化合物都具有潜在的药理活性, 在现有的药物和农药中杂环化合物占有很大比例.在含氮杂环化合物中, 吡唑并[3, 4-b]吡啶衍生物因具有多样的生理和药理活性被广泛关注, 如可以作为抗菌药[1]、消炎药[2]、抗增殖药[3]、抗焦虑药物[4]等.另外吡唑并[3, 4-b]吡啶衍生物还可用作高效和选择性的A1腺苷受体的抑制剂、PDE4抑制剂、p38α激酶抑制剂、GSK-3抑制剂等[5].香豆素作为一种含氧杂环化合物的代表, 具有抗癌[6]、抗凝血剂活性[7]、抗HIV[8]、抗结核[9]、消炎[10]、抗氧化剂[11]、抗菌[12]、降压[13][14]作用.

    铌酸是具有独特性质的固体酸催化剂, 经低温热处理后显示出较高的酸性, 可以作为酯化、水合、氢转移、氧化、氨氧化等反应的催化剂[15], 铌酸经质子酸改性后, 酸性增强, 催化性能稳定, 且表现出更优良的催化效果[16].

    在构建杂环化合物的方法中, 多组分反应因具有高效、高选择、反应条件温和, 操作简洁方便等特点被广泛应用[17], 并取得了良好的合成效果.

    基于香豆素和吡唑并[3, 4-b]吡啶骨架有很好的药理活性, 关于这两类物质的合成方法报道较多[18], 但鲜有文献报道香豆素并吡唑并[3, 4-b]吡啶衍生物, 本课题组希望可以以醛为中介, 通过多组分反应合成吡啶环来实现该类化合物的合成.合成吡啶环的方法主要有Hantzsch法、Knoevenagel-Fries法、Kröhnke反应等[19].本文以磷酸改性的铌酸为催化剂, 以醛、香豆素、5-氨基吡唑的为原料, 通过烯胺和醛、活泼亚甲基酮的三组分反应构建吡啶环, 一步高产率地合成香豆素修饰的吡唑并[3, 4-b]吡啶衍生物.

    在查阅文献的基础上[17a, 20], 我们合成了香豆素衍生物1a, 并以其为原料尝试多组分反应.取0.5 mmol香豆素衍生物(1a)、0.5 mmol氨基吡唑(2a)以及0.5 mmol苯甲醛(3a)为原料, 微波条件下反应20 min合成香豆素修饰的吡唑并[3, 4-b]吡啶衍生物(4a)为模板反应, 考察溶剂、催化剂的种类、用量及反应温度对反应的影响, 结果列于表 1中.

    表 1

    表 1  合成化合物4a反应条件筛选a
    Table 1.  Optimization of the reaction conditions for the synthesis of compound 4a
    下载: 导出CSV
    Entry Catalyst Solvent Temp./℃ Yieldb/%
    1 H3PO4 (10 mol%) EtOH 120 10
    2 H2SO4 (10 mol%) EtOH 120 23
    3 HClO3S (10 mol%) EtOH 120 26
    4 Amberlyst15 (0.02 g) EtOH 120 32
    5 HZSM-5 (0.02 g) EtOH 120 35
    6 SO4-TiO2 (0.02 g) EtOH 120 38
    7 SO4-ZrO2 (0.02 g) EtOH 120 37
    8 Nb-OH (0.02 g) EtOH 120 46
    9 Nb-OH"PO4 (0.02 g) EtOH 120 63
    10 Nb-OH"SO4 (0.02 g) EtOH 120 55
    11 Nb-OH"NO3 (0.02 g) EtOH 120 58
    12 NaOH (20 mol%) EtOH 120
    13 Cs2CO3 (20 mol%) EtOH 120 trace
    14 Nb-OH"PO4 (0.02 g) EG 120 65
    15 Nb-OH"PO4 (0.02 g) GL 120 69
    16 Nb-OH"PO4 (0.02 g) DMF 120 51
    17 Nb-OH"PO4 (0.01 g) GL 120 54
    18 Nb-OH"PO4 (0.015 g) GL 120 70
    19 Nb-OH"PO4 (0.025 g) GL 120 67
    20 Nb-OH"PO4 (0.015 g) GL 100 45
    21 Nb-OH"PO4 (0.015 g) GL 110 57
    22 Nb-OH"PO4 (0.015 g) GL 130 76
    23 Nb-OH"PO4 (0.015 g) GL 140 71
    a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), solvent (1 mL), 20 min; b Yield was determined by HPLC-MS.

    通过表 1可以看出, 在对催化剂进行筛选时, 酸性催化剂对反应均有促进作用(Table 1, Entries 1~8), 几种固体酸的催化活性优于质子酸, 其中以铌酸(Nb2O5· nH2O, Nb-OH)作为催化剂时产率最高, 液相产率达到46% (Table 1, Entry 8).为了增强铌酸的酸性, 对铌酸进行改性, 发现改性后的铌酸催化能力有一定的提高, 当使用磷酸改性的铌酸时(Nb-OH·PO4), 产率最高为63% (Table 1, Entry 9).随后对溶剂、磷酸改性铌酸用量以及反应温度进行筛选, 发现最优的溶剂为丙三醇(GL, Table 1, Entry 15), 最佳的磷酸改性铌酸量为0.015 g (Table 1. Entry 18), 最佳微波反应温度为130 ℃ (Table 1, Entry 22).在对反应进行条件筛选时, 发现铌酸对反应有一定的催化效果, 当铌酸用磷酸进行改性后, 催化效果更好.铌酸的酸性来源于其表面的Nb-OH和OH (Brønsted酸中心)以及配位未饱和的Nb5+ (Lewis酸中心).铌酸经1 mol·L-1磷酸处理后, 铌酸表面的酸位点强度有所增强, 强度变化如图 1所示.

    图 1

    图 1.  磷酸处理前后铌酸表面的NH3程序升温脱附图

    (a) NA-p, (b) NA

    Figure 1.  NH3-TPD profiles of niobic acid and niobic acid modified with phosphoric acid

    在100~500 ℃范围内有一个明显的脱附峰, 这表明铌酸表面的酸位点强度分布范围很宽, 但主要以弱酸位点和中等强度酸位点为主.磷酸处理后铌酸表面酸性增强可能是由于磷酸铌化合物的形成导致的.在实验过程中, 用NH3-TPD对铌酸位点数目的变化进行测定, 测定结果表明铌酸表面酸位点数由3.5 mmol/g增加至4.4 mmol/g, 即经过1 mol·L-1磷酸处理后, 铌酸的酸量增多.

    在最优反应条件下, 利用香豆素衍生物(1)、氨基吡唑(2)以及醛(3)的三组分反应合成了一系列香豆素修饰的吡唑并[3, 4-b]吡啶衍生物(4), 其结果见表 2.

    表 2

    表 2  香豆素修饰[4, 3-d]吡唑并[3, 4-b]吡啶衍生物4的合成a
    Table 2.  Synthesis of coumarin-fused pyrazolo[3, 4-b]pyr idine derivatives 4
    下载: 导出CSV

    表 2可以看出, 不管是芳香醛、杂芳醛还是脂肪醛, 反应都可以顺利进行, 生成相应的产物, 氨基吡唑2上的电子效应对反应的影响较大, 当R3上连有吸电子基团(Ph)时, 产率较高, 连有供电子基(CH3)时产率明显降低(Table 2, 4g, 4h), 当R3和R4上同时连有供电子基团时, 反应不能顺利进行(Table 2, 4m, 4n).产物的结构经红外光谱、核磁共振氢谱和碳谱以及高分辨质谱证实, 为了进一步确定化合物的结构, 培养了化合物4k的单晶, 见图 2.

    图 2

    图 2.  化合物4k的单晶图
    Figure 2.  Crystal structure of 4k

    为了推测反应机理, 尝试先利用香豆素衍生物(1a)与乙醛(3f)为原料, 以丙三醇为溶剂, 在磷酸改性的铌酸催化下进行两组分微波反应(Scheme 1A), 反应15 min后取样利用液质联用质谱仪跟踪反应进程, 在反应体系中检测到了Knoevenagel缩合中间体A1, 向反应体系中加入氨基吡唑2继续反应10 min (Scheme 1B), 可生成产物4k.尽管目前对确切的反应机理尚不清楚, 结合其他参考文献[21], 推测了该反应可能的反应机理(Scheme 2).首先, 磷酸改性铌酸作为固体酸催化剂活化香豆素衍生物1的酮羰基与醛3发生Knoevenagel缩合得到中间体A, 然后, 5-氨基吡唑2A发生Michael加成反应得中间体B, 中间体B通过质子交换得更为稳定的中间体C, 再经亚胺-烯胺互变异构得到中间体D, 随后, 中间体D发生分子内的环化反应后失去催化剂改性铌酸得到中间体E, 中间体E在磷酸改性铌酸催化下, 失去一分子水生成中间体F, 中间体F在磷酸改性铌酸催化氧化下芳构化生成最终的目标产物4.

    图式 1

    图式 1.  反应机理前期研究
    Scheme 1.  Preliminary mechanistic studies

    以固体酸磷酸改性铌酸为催化剂, 以3-酰基香豆素、5-氨基吡唑和醛为原料, 丙三醇作溶剂, 经微波辐射, 高效地合成了一系列的稠杂环化合物香豆素并[4, 3-d]吡唑并[3, 4-b]吡啶衍生物.该方法具有反应时间点, 避免烦琐的分离过程.为该类化合物的合成提供了有效方法, 对发展该类化合物的药理、生物活性和光学短、产率高、选择性好、操作简单方便、环境友好等优性质研究提供了一定的拓展空间.

    图式 2

    图式 2.  可能的反应机理
    Scheme 2.  Proposed reaction mechanism

    微波反应仪器:瑞典Initiator 2.5微波合成仪, 核磁共振谱用Bruker Avance Ⅲ-400 MHz或Varian Inova- 300 MHz型共振谱仪测定, DMSO或CF3COOD为溶剂, TMS为内标; 红外光谱用Varian F-1000型红外光谱仪测定(KBr压片); 高分辨质谱用Bruker公司生产的microTOF-Q Ⅱ HRMS/MS质谱仪(ESI)测试; 化合物的熔点用XT-5型显微熔点测定仪测定, 温度计未校正.有机反应用薄层硅胶板(TLC)跟踪, 紫外灯检测.其他试剂均为市售分析纯.

    3.2.1   硫酸改性氧化钛催化剂(SO4-TiO2)的制备

    取氯化钛20 g置于200 mL水中, 后加入氨水调节pH值至8到9, 搅拌24 h, 陈化12 h后, 离心, 用去离子水洗涤, 放烘箱110 ℃干燥12 h后, 用0.5 mol·L-1硫酸以10 mL/g的量浸渍固体粉末24 h, 然后离心, 用水洗涤3~4次, 65 ℃干燥12 h, 500 ℃焙烧3 h.

    3.2.2   硫酸改性氧化锆催化剂(SO4-ZrO2)的制备

    取氧氯化锆20 g置于200 mL水中, 加入氨水调节pH值至8到9, 搅拌24 h, 陈化12 h后, 离心, 用去离子水洗涤至没有氯离子, 放烘箱110 ℃干燥12 h后, 用0.5 mol·L-1硫酸以10 mL/g的量浸渍固体粉末24 h, 然后离心, 用水洗涤3~4次, 65 ℃干燥12 h, 500 ℃焙烧3 h.

    3.2.3   磷酸改性铌酸催化剂(Nb-OH·PO4)的制备

    取3 g铌酸置于40 mL的1 mol·L-1 H3PO4溶液中, 室温搅拌48 h, 陈化12 h后进行离心, 用去离子水将得到沉淀洗涤, 直至pH呈中性.之后于65 ℃鼓风干燥箱中干燥12 h, 110 ℃真空干燥2 h后, 在300 ℃焙烧3 h即可.

    3.2.4   硫酸改性铌酸催化剂(Nb-OH·SO4)的制备

    取3 g铌酸置于40 mL的1 mol·L-1 H2SO4溶液中, 室温搅拌48 h, 陈化12 h后进行离心, 用去离子水将得到沉淀洗涤, 直至pH呈中性.之后于65 ℃鼓风干燥箱中干燥12 h, 110 ℃真空干燥2 h后, 在300 ℃焙烧3 h即可.

    3.2.5   硝酸改性铌酸催化剂(Nb-OH·NO3)的制备

    取3 g铌酸置于40 mL的1 mol·L-1 HNO3溶液中, 室温搅拌48 h, 陈化12 h后进行离心, 用去离子水将得到沉淀洗涤, 直至pH呈中性.之后于65 ℃鼓风干燥箱中干燥12 h, 110 ℃真空干燥2 h后, 在300 ℃焙烧3 h即可.

    在微波反应瓶(10~20 mL)中, 分别加入5 mmol萘水杨醛和5 mmol的乙酰乙酸乙酯(或丙酰乙酸乙酯、丁酰乙酸乙酯), 5 mL乙醇, 加入10 mmol%哌啶作为催化剂, 微波条件下100 ℃反应15 min, 冷却至室温, 有大量黄色固体析出, 固体抽滤得到粗产物, 粗产物用95%乙醇重结晶得到香豆素1.

    2-丁基-3H-苯基[f]色烯-3-酮(1a):黄色固体, m.p. 127~129 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.21 (s, 1H, ArH), 8.91 (s, 1H, ArH), 8.06 (d, J=8.8 Hz, 1H, ArH), 7.83 (d, J=8.8 Hz, 1H, ArH), 7.57~7.56 (m, 1H, ArH), 7.20 (d, J=9.2 Hz, 1H, ArH), 7.12 (dd, J=8.8, 2.0 Hz, 1H, ArH), 3.00 (t, J=7.2 Hz, 2H, CH2), 1.63~1.58 (m, 2H, CH2), 0.93 (t, J=7.2 Hz, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 197.5, 159.1, 158.9, 156.4, 142.8, 136.6, 132.1, 131.5, 124.6, 121.9, 118.6, 113.0, 111.4, 104.8, 43.9, 17.3, 14.1; IR (KBr) ν: 1734, 1626, 1557, 1513, 1383, 1109, 864 cm-1. HRMS calcd for C17H14O3 266.0943, found 266.0951.

    2-丁基-9-甲氧基-3H-苯基[f]色烯-3-酮(1b):黄色固体, m.p. 125~128 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.01 (s, 1H, ArH), 7.86 (d, J=8.8 Hz, 1H, ArH), 7.68 (d, J=8.8 Hz, 1H, ArH), 7.40 (s, 1H, ArH), 7.14 (t, J=8.4 Hz, 2H, ArH), 3.94 (s, 3H, CH3O), 3.12 (t, J=8.4 Hz, 2H, CH2); 1.76~1.70 (m, 2H, CH2), 1.00 (t, J=8.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 197.6, 159.9, 158.7, 156.0, 142.5, 135.3, 131.2, 130.2, 124.7, 121.1, 117.9, 113.1, 111.4, 100.7, 55.5, 44.0, 16.9, 13.3; IR (KBr) ν: 1730, 1667, 1601, 1556, 1513, 1386, 1365, 1196, 948, 836 cm-1.

    2-丙基-3H-苯基[f]色烯-3-酮(1c):黄色固体, m.p. 134~136 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.15 (s, 1H, ArH), 8.74 (s, 1H, ArH), 7.90 (d, J=8.8 Hz, 1H, ArH), 7.66 (d, J=8.8 Hz, 1H, ArH), 7.41~7.40 (m, 1H, ArH), 7.04 (d, J=8.8 Hz, 1H, ArH), 6.95 (dd, J=8.8, 2.0 Hz, 1H, ArH), 3.14~3.08 (m, 2H, CH2), 1.08 (t, J=7.2 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 198.4, 159.9, 159.4, 156.7, 143.3, 135.9, 131.9, 130.8, 125.3, 121.8, 118.7, 113.7, 112.1, 102.0, 35.2, 10.7; IR (KBr) ν: 1732, 1662, 1601, 1556, 1524, 1387, 1365, 1196, 945, 823 cm-1.

    9-甲氧基-2-丙基-3H-苯基[f]色烯-3-酮(1d):黄色固体, m.p. 125~128 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.19 (s, 1H, ArH), 8.14 (d, J=9.2 Hz, 1H, ArH), 7.90 (d, J=9.2 Hz, 1H, ArH), 7.79 (s, 1H, ArH), 7.32 (t, J=8.8 Hz, 1H, ArH), 7.21 (dd, J=8.8, 2.0 Hz, 1H, ArH), 3.98 (s, 3H, CH3O), 3.10~3.05 (m, 2H, CH2), 1.09 (t, J=7.2 Hz, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ: 198.7, 160.4, 158.8, 156.1, 143.0, 136.2, 131.9, 131.2, 125.4, 122.8, 118.6, 113.9, 112.1, 102.4, 56.2, 35.4, 8.4; IR (KBr) ν: 1730, 1667, 1601, 1556, 1513, 1386, 1365, 1196, 948, 836 cm-1.

    在微波反应瓶(2~5 mL)中, 分别加入香豆素衍生物1 (0.5 mmol)、5-氨基吡唑2 (0.5 mmol)、醛3 (0.5 mmol)、1 mL丙三醇以及磷酸改性铌酸(0.015 g), 预搅拌20 s后, 在130 ℃条件下, 辐射20 min, TLC跟踪反应, 直至反应完全.反应完全后将体系倒入30 mL水中二氯甲烷萃取, 有机层无水硫酸钠干燥, 旋干, 得粗产物, 粗产物经柱层析得到产物4.

    2-(5-乙基-3-甲基-1, 4-二苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4a):黄色固体, m.p.>300 ℃; 1H NMR (400 MHz, CF3COOD) δ: 10.16 (s, 1H, ArH), 9.17~9.13 (m, 2H, ArH), 8.88~8.87 (m, 1H, ArH), 8.65~8.56 (m, 5H, ArH), 8.51~8.47 (m, 6H, ArH), 8.39~8.36 (m, 2H, ArH), 3.77~3.76 (m, 2H, CH2), 3.05 (s, 3H, CH3), 1.91 (s, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 163.8, 156.1, 149.5, 146.9, 146.5, 140.9, 139.2, 135.9, 134.4, 132.8, 132.7, 132.1, 131.7, 131.3, 130.9, 130.3, 130.0, 129.5, 128.6, 127.9, 126.6, 121.9, 121.5, 116.9, 116.3, 113.7, 23.0, 14.4, 12.6; IR (KBr) ν: 3032, 2978, 2888, 2763, 1725, 1049, 958, 815, 756, 699, 679 cm-1; HRMS calcd for C34H26N3O2 [M+H]+ 508.2025, found 508.2025.

    2-(5-乙基-3-甲基-1, 4-二苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-9-甲氧基-3H-苯并[f]色烯-3-酮(4b):黄色固体, m.p. 248~250℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.33 (s, 1H, ArH), 8.25~8.16 (m, 3H, ArH), 8.00~7.95 (m, 2H, ArH), 7.63~7.46 (m, 8H, ArH), 7.28~7.24 (m, 2H, ArH), 3.92 (s, 3H, OCH3), 2.55~2.53 (m, 2H, CH2), 1.89 (s, 3H, CH3), 0.87 (t, J=7.6 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6) δ: 160.3, 160.1, 154.5, 154.4, 148.7, 145.4, 142.8, 140.6, 139.5, 135.9, 134.0, 131.5, 131.0, 130.5, 129.6, 129.1, 128.9, 127.0, 125.9, 125.7, 120.6, 118.7, 115.8, 114.2, 112.8, 102.7, 56.3, 22.5, 15.8, 14.2; IR (KBr) ν: 2968, 1724, 1631, 1573, 1507, 1434, 1414, 1384, 1354, 1281, 1241, 1135, 1105, 980, 960, 905, 827, 789, 758, 705, 692, 636 cm-1; HRMS calcd for C35H28N3O3 [M+H]+ 538.2131, found 538.2122.

    2-(5-乙基-(4-甲氧基苯基)-3-甲基-1-苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4c):黄色固体, m.p.>300 ℃; 1H NMR (400 MHz, CF3COOD) δ: 9.29 (s, 1H, ArH), 8.29~8.24 (m, 2H, ArH), 8.00 (d, J=8.4 Hz, 1H, ArH), 7.76 (t, J=7.6 Hz, 1H, ArH), 7.69~7.62 (m, 2H, ArH), 7.60~7.57 (m, 5H, ArH) 7.51 (d, J=8.0 Hz, 2H, ArH), 7.35 (d, J=8.4 Hz, 2H, ArH), 4.06 (s, 3H, OCH3), 2.94~2.88 (m, 2H, CH2), 2.24 (s, 3H, CH3), 1.02 (t, J=7.2 Hz, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 163.0, 161.0, 160.6, 155.3, 148.5, 145.9, 145.7, 140.0, 138.3, 135.3, 133.5, 131.8, 131.2, 130.4, 130.0, 129.4, 129.2, 128.7, 127.7, 125.8, 125.4, 121.3, 120.7, 116.0, 115.5, 114.9, 112.8, 55.2, 22.1, 13.4, 12.0; IR (KBr) ν: 2967, 1711, 1597, 1571, 1505, 1412, 1286, 1249, 1211, 1048, 982, 897, 849, 806, 758, 690, 641 cm-1; HRMS calcd for C35H28N3O3 [M+H]+ 538.2131, found 538.2111.

    2-(5-乙基-(4-甲氧基苯基)-3-甲基-1-苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-9-甲氧基-3H-苯并[f]色烯-3-酮(4d):黄色固体, m.p. 256~258 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.34 (s, 1H, ArH), 8.25~8.18 (m, 3H, ArH), 8.02~8.00 (m, 2H, ArH), 7.52~7.48 (m, 3H, ArH), 7.40~7.38 (m, 2H, ArH), 7.28~7.25 (m, 2H, ArH), 7.16 (d, J=8.8 Hz, 2H, ArH), 3.93 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 2.68~2.56 (m, 2H, CH2), 1.96 (s, 3H, CH3), 0.88 (t, J=7.6 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6) δ: 160.2, 160.1, 159.7, 154.5, 154.3, 148.7, 145.4, 142.9, 140.5, 139.5, 133.9, 131.5, 130.9, 130.9, 130.4, 129.6, 127.8, 127.1, 125.8, 125.7, 120.5, 118.7, 116.2, 114.2, 112.8, 102.7, 56.3, 55.6, 22.4, 15.7, 14.4; IR (KBr) ν: 2965, 2145, 1735, 1717, 1629, 1572, 1463, 1381, 1286, 1227, 1077, 960, 887, 884, 805, 691, 604 cm-1; HRMS calcd for C36H30N3O4 [M+H]+ 568.2236, found 568.2248.

    2-(3, 5-二甲基-1, 4-二苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4e):黄色固体, m.p.>300 ℃; 1H NMR (400 MHz, CF3COOD) δ: 9.33 (s, 1H, ArH), 8.29~8.23 (m, 2H, ArH), 8.00~7.98 (m, 1H, ArH), 7.78~7.68 (m, 5H, ArH), 7.66~7.58 (m, 6H, ArH), 7.48~7.46 (m, 2H, ArH), 2.43 (s, 3H, CH3), 2.22 (s, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 155.2, 148.2, 146.1, 145.7, 139.8, 138.4, 133.4, 132.3, 131.7, 131.0, 130.7, 130.3, 129.9, 129.3, 129.2, 128.9, 128.6, 127.6, 126.8, 125.6, 120.5, 120.3, 115.8, 115.4, 112.8, 14.8, 11.7; IR (KBr) ν: 2934, 2173, 1710, 1598, 1572, 1438, 1278, 965, 909, 820, 791, 692, 651, 633 cm-1; HRMS calcd for C33H24N3O2 [M+H]+ 494.1869, found 494.1887.

    2-(4-(3-甲氧基苯基)-3, 5-二甲基-1-苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-并[f]色烯-3-酮(4f):白色固体, m.p. 260~263 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.20 (s, 1H, ArH), 8.66 (d, J=8.4 Hz, 1H, ArH), 8.30~8.26 (m, 3H, ArH), 8.10 (d, J=8.0 Hz, 1H, ArH), 7.75~7.63 (m, 3H, ArH), 7.55~7.48 (m, 3H, ArH), 7.26 (t, J=7.6 Hz, 1H, ArH), 7.14~7.12 (m, 1H, ArH), 7.00~6.98 (m, 2H, ArH), 3.84 (s, 3H, OCH3), 2.14 (s, 3H, CH3), 2.00 (s, 3H, CH3); 13C NMR (75 MHz, DMSO-d6) δ: 159.6, 159.5, 154.3, 153.9, 148.9, 145.1, 142.6, 140.3, 139.5, 137.5, 134.2, 130.5, 130.2, 129.6, 129.4, 129.3, 128.9, 128.1, 126.7, 125.8, 124.4, 123.0, 121.3, 120.6, 117.1, 115.5, 114.6, 114.5, 113.5, 55.7, 16.1, 14.3; IR (KBr) ν: 2970, 2372, 1718, 1573, 1505, 1410, 1362, 1279, 1239, 1142, 1054, 1019, 988, 970, 877, 815, 786, 744, 714, 670 cm-1; HRMS calcd for C34H26N3O3 [M+H]+ 524.1974, found 524.1978.

    2-(5-乙基-1-甲基-3, 4-二苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4g):黄色固体, m.p. 285~288 ℃; 1H NMR (400 MHz, CF3COOD) δ: 10.27 (s, 1H, ArH), 9.25 (d, J=8.8 Hz, 2H, ArH), 8.95 (d, J=8.0 Hz, 1H, ArH), 8.73 (t, J=7.6 Hz, 1H, ArH), 8.65~8.55 (m, 2H, ArH), 8.28~8.15 (m, 4H, ArH), 8.10~7.94 (m, 6H, ArH), 5.32 (s, 3H, CH3), 3.87~3.85 (m, 2H, CH2), 1.84 (t, J=7.2 Hz, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 162.8, 155.2, 150.3, 146.0, 145.4, 140.2, 138.2, 134.2, 131.1, 131.1, 130.2, 129.8, 129.5, 129.3, 128.5, 128.2, 127.8, 127.7, 127.5, 127.1, 120.5, 119.2, 116.2, 115.4, 34.8, 21.8, 13.0; IR (KBr) ν: 2396, 1732, 1574, 1353, 1099, 1515, 1088, 1076, 959, 810, 803, 704 cm-1; HRMS calcd for C34H26N3O2 [M+H]+ 508.2025, found 508.2027.

    9-甲氧基-2-(4-(4-甲氧基苯基)-1, 5-二甲基-3-苯基- 1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4h):黄色固体, m.p. 240~244 ℃; 1H NMR (400 MHz, CF3COOD) δ: 10.16 (s, 1H, ArH), 9.09 (d, J=8.8 Hz, 1H, ArH), 8.84~8.71 (m, 2H, ArH), 8.36~8.25 (m, 2H, ArH), 8.17~8.14 (m, 1H, ArH), 8.03~7.88 (m, 6H, ArH), 7.69~7.67 (m, 2H, ArH), 5.24 (s, 3H, OCH3), 4.91 (s, 3H, OCH3), 4.73 (s, 3H, CH3), 3.31 (s, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 162.4, 160.2, 156.1, 150.0, 145.9, 145.8, 140.3, 138.0, 131.4, 130.4, 129.4, 128.7, 128.1, 128.0, 127.6, 126.8, 125.1, 117.5, 114.2, 113.5, 103.1, 55.2, 55.0, 34.9, 15.1; IR (KBr) ν: 2932, 1720, 1624, 1608, 1564, 1512, 1463, 1383, 1353, 1289, 1249, 1208, 1173, 1025, 970, 902, 836, 801, 698, 664, 607 cm-1; HRMS calcd for C35H28N3O4 [M+H]+ 524.1974, found 524.1972.

    2-(5-乙基-3-甲基-1-苯基-4-(吡啶-4-基)-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4i):黄色固体, m.p.>300 ℃; 1H NMR (400 MHz, CF3COOD) δ: 10.09 (s, 1H, ArH), 9.11~9.05 (m, 2H, ArH), 8.80 (d, J=8.0 Hz, 1H, ArH), 8.60~8.35 (m, 10H, ArH), 8.21~8.19 (m, 2H, ArH), 3.72~3.70 (m, 2H, CH2), 3.01 (s, 3H, CH3), 1.83 (t, J=6.8 Hz, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 162.8, 155.0, 148.5, 145.5, 145.4, 142.0, 139.7, 138.1, 135.0, 133.3, 131.6, 131.0, 130.2, 129.8, 129.5, 129.2, 128.7, 128.5, 127.5, 126.8, 125.5, 121.0, 120.4, 115.8, 115.3, 112.6, 21.8, 13.3, 11.6; IR (KBr) ν: 2965, 1972, 1783, 1573, 1505, 1413, 1362, 1089, 961, 898, 805, 758, 693, 642 cm-1; HRMS calcd for C33H25N4O2 [M+ H]+ 509.1978, found 509.1963.

    2-(5-乙基-3-甲基-1-苯基-4-(呋喃-2-基)-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4j):黄色固体, m.p.>300 ℃; 1H NMR (400 MHz, CF3COOD) δ: 9.24 (s, 1H, ArH), 8.21 (d, J=9.2 Hz, 1H, ArH), 7.95 (d, J=8.8 Hz, 1H, ArH), 7.65~7.63 (m, 2H, ArH), 7.62~7.55 (m, 6H, ArH), 7.46 (d, J=9.2 Hz, 1H, ArH), 7.39 (m, 3H, ArH), 2.93~2.87 (m, 2H, CH2), 2.21 (s, 3H, CH3), 1.03 (t, J=7.6 Hz, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 163.0, 160.2, 156.0, 148.7, 145.7, 142.1, 140.0, 137.9, 135.2, 133.5, 131.9, 131.5, 130.7, 130.5, 129.8, 129.0, 127.1, 126.9, 125.8, 121.2, 118.0, 115.4, 113.7, 112.2, 22.1, 13.6, 11.8; IR (KBr) ν: 2966, 1720, 1629, 1566, 1412, 1383, 1264, 1084, 959, 852, 797, 766, 724, 691, 640, 617 cm-1; HRMS calcd for C32H24N3O3 [M+H]+ 498.1818, found 498.1831.

    2-(5-乙基-3, 4-二甲基-1-苯基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4k):白色固体, m.p. 258~260 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.07 (s, 1H, ArH), 8.59 (d, J=8.4 Hz, 1H, ArH), 8.23 (t, J=8.0 Hz, 3H, ArH), 8.08 (d, J=8.0 Hz, 1H, ArH), 7.71~7.61 (m, 3H, ArH), 7.44 (t, J=8.0 Hz, 2H, ArH), 7.20 (t, J=7.2 Hz, 1H, ArH), 2.78 (s, 3H, CH3), 2.75 (s, 3H, CH3), 2.72~2.61 (m, 2H, CH2), 1.05 (t, J=7.2 Hz, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 163.7, 156.0, 148.8, 146.2, 145.4, 140.5, 139.2, 135.6, 134.2, 132.7, 132.0, 131.3, 130.8, 130.2, 129.4, 128.5, 126.5, 122.4, 121.3, 116.7, 116.3, 22.7, 17.0, 14.3, 13.4; IR (KBr) ν: 2960, 1722, 1629, 1572, 1507, 1415, 1387, 1315, 1290, 1248, 1211, 1096, 989, 906, 815, 787, 713, 691, 605 cm-1; HRMS calcd for C29H24N3O2 [M+H]+ 446.1869, found 446.1853.

    2-(5-乙基-3-甲基-1-苯基-4-丙基-1H-吡唑并[3, 4-b]吡啶-6-基)-3H-苯并[f]色烯-3-酮(4l):黄色固体, m.p. 242~245 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 9.14 (s, 1H, ArH), 8.63 (d, J=8.8 Hz, 1H, ArH), 8.28~8.21 (m, , 3H, ArH), 8.10 (d, J=8.0 Hz, 1H, ArH), 7.70~7.64 (m, 3H, ArH), 7.46 (t, J=7.6 Hz, 2H, ArH), 7.22 (t, J=7.6 Hz, 1H, ArH), 3.07~3.06 (m, 2H, CH2), 2.76~2.73 (m, 5H, CH3+CH2), 1.73~1.69 (m, 2H, CH2), 1.14 (s, 3H, CH3), 1.08 (s, 3H, CH3); 13C NMR (75 MHz, CF3COOD) δ: 165.7, 156.0, 148.1, 146.2, 146.0, 140.9, 139.1, 135.0, 134.1, 132.6, 132.0, 131.2, 130.8, 130.2, 129.4, 128.5, 126.5, 121.7, 121.3, 116.2, 33.4, 26.2, 22.2, 14.5, 13.7; IR (KBr) ν: 2974, 2880, 2703, 2545, 1789, 1722, 1665, 1573, 1503, 1439, 1414, 1389, 1359, 1320, 1288, 1248, 1217, 1155, 1091, 915, 858, 813, 792, 745, 695, 641, 610 cm-1; HRMS calcd for C31H28N3O2 [M+H]+ 474.2182, found 474.2210.

    辅助材料(Supporting Information)产物的核磁共振氢谱和碳谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.


    1. [1]

      El-Borai, M. A.; Rizk, H. F.; Beltagy, D. M.; El-Deeb, I. Y. Eur. J Med. Chem. 2013, 66, 415. doi: 10.1016/j.ejmech.2013.04.043

    2. [2]

      De Mello, H.; Echevarria, A.; Bernardino, A. M.; CantoCavalheiro, M.; Leon, L. L. J. Med. Chem. 2004, 47, 5427. doi: 10.1021/jm0401006

    3. [3]

      (a) Lin, R.; Connolly, P. J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel, S. L.; Middleton, S. A.; Gruninger, R. H.; Adams, M.; Fuentes-Pesquera A. R.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007, 17, 4297.
      (b) Revesz, L.; Blum, E.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2006, 16, 262.

    4. [4]

      (a) Parker, W. B. Chem. Rev. 2009, 109, 2880.
      (b) Miliutina, M.; Janke, J.; Hassan, S.; Zaib, S.; Iqbal, J. Lecka, J.; Sévigny, J.; Villinger, A.; Friedrich, A.; Lochbrunner, S.; Langer, P. Org. Biomol. Chem. 2018, 16, 717.

    5. [5]

      (a) Ghosh, A.; Khan, A. T. Tetrahedron Lett. 2014, 55, 2006.
      (b) Babu, P. A.; Narasu, M. L.; Srinivas, K. ARKIVOC 2007, ii, 247.
      (c) Trujillo, J. I.; Kiefer, J. R.; Huang, W.; Thorarensen, A.; Xing, L.; Caspers, N. L.; Day, J. E.; Mathis, K. J.; Kretzmer, K. K.; Reitz, B. A.; Weinberg, R. A.; Stegeman, R. A.; Wrightstone, A.; Christine, L.; Compton, R.; Li, X. Bioorg. Med. Chem. Lett. 2009, 19, 908.
      (d) Svetlik, J.; Veizerova, L.; Mayer, T. U.; Catarinella, M. Bioorg. Med. Chem. Lett. 2010, 20, 4073.
      (e) Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Bioorg. Med. Chem. Lett. 2009, 19, 4566.

    6. [6]

      (a) Luo, K. W.; Sun, J. G.; Chan, J. W.; Yang, L.; Wu, S. H.; Fung, K. P.; Liu, F. Y. Chemotherapy 2011, 57, 449.
      (b) Bhinder, C. K.; Kaur, A. Int. J. Pharm. Res. Bio-Sci. 2014, 3, 560.
      (c) Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Eur. J. Med. Chem. 2016, 119, 141.

    7. [7]

      (a) Poole, S. K.; Poole, C. F. Analyst 1994, 119, 113.
      (b) Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Curr. Med. Chem. 2010, 17, 1325.

    8. [8]

      (a) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. J. Med. Chem. 1993, 36, 4131.
      (b) Spino, C.; Dodier, M. Bioorg. Med. Chem. Lett. 1998, 8, 3475.
      (c) Kostova, I.; Mojzis, J. Future HIV Ther. 2007, 1, 315.

    9. [9]

      (a) Shin, E.; Choi, K. M.; Yoo, H. S.; Lee, C. K.; Hwang, B. Y.; Lee, M. K. Biol. Pharm. Bull. 2010, 33, 1610.
      (b) Keri, R. S.; Sasidhar, B. S.; Nagaraja, B. M.; Santos, M. A. Eur. J. Med. Chem. 2015, 100, 257.

    10. [10]

      (a) Piller, N. Br. J. Exp. Pathol. 1975, 56, 554.
      (b) Bansal, Y.; Sethi, P.; Bansal, G. Med. Chem. Res. 2013, 22, 3049.

    11. [11]

      Whang, W. K.; Park, H. S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H. K.; Hwang, D. W.; Hur, S. Y.; Kim, T. E.; Park, Y. G. Exp. Mol. Med. 2005, 37, 436. doi: 10.1038/emm.2005.54

    12. [12]

      Rosselli, S.; Maggio, A. M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H.; Bruno, M. Nat. Prod. Commun. 2009, 4, 1701. 

    13. [13]

      Crichton, E. G.; Waterman, P. G. Phytochemistry 1978, 17, 1783. doi: 10.1016/S0031-9422(00)88695-1

    14. [14]

      (a) Baek, N. I.; Ahn, E. M.; Kim, H. Y.; Park, Y. D. Arch. Pharm. Res. 2000, 23, 467.
      (b) Teng, M. C.; Lin, H.; Ko, F. N.; Wu, T. S. Huang, T. F. Naunyn-Schmiedeberg's Arch. Pharmacol. 1994, 349, 202.
      (c) Fort, D.; Rao, K.; Jolad, S.; Luo, J.; Carlson, T.; King, S. Phytomedicine 2000, 6, 465.

    15. [15]

      (a) Gallo, J. M. R.; Teixeim, S.; Sehuchardt, U. Appl. Catal. A 2006, 311, 199.
      (b) Prasetyoko, D.; Ramli, Z.; Endud, S. Mater. Chem. Phys. 2005, 93(2~3), 443.

    16. [16]

      Kurosaki, A.; Okuyama, T.; Okazaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 3541. doi: 10.1246/bcsj.60.3541

    17. [17]

      (a) Lin, W.; Hu, X. X.; Song, S.; Cai, Q.; Wang, Y.; Shi, D. Q. Org. Biomol. Chem. 2017, 15, 7909.
      (b) Liu, X. C.; Lin, W.; Wang, H. Y.; Huang, Z. B.; Shi, D. Q. J. Heterocycl. Chem. 2014, 51, 1036.
      (c) Wu, J. R.; Luo, H.; Wang, T.; Sun, H, M.; Zhang, Q. Chai, Y. H.; Tetrahedron Lett. 2019, 75, 1052.
      (d) Arumugam, N.; Almansour, A I.; Kumar, R, S.; Altaf, M.; Mahalingam, S. M.; Periyasami, G.; Menéndez, J. C.; Al-Aizari, A. J. M. A. Tetrahedron Lett. 2019, 60, 602.
      (e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
      (f) Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A. A.; Yu, M.; Magedov, A. I. V.; Kornienko, A. J. Org. Chem. 2007, 72, 3433.
      (g) Wang, J. X.; Lin, W.; Liu, H. T.; Hu, M. H.; Feng, X.; Huang, Z. B.; Shi, D. Q. Chin. J. Org. Chem. 2015, 35, 927 (in Chinese).
      (王菊仙, 林伟, 刘洪涛, 胡明华, 冯贤, 黄志斌, 史达清, 有机化学, 2015, 35, 927.)

    18. [18]

      (a) Gao, G.; Wang, P.; Liu, P.; Zhang, W. H.; Mo, L. P.; Zhang, Z. H. Chin. J. Org. Chem. 2018, 38, 846 (in Chinese).
      (高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846.)
      (b) Lin, W.; Cai, Q.; Zheng, C. Z.; Zheng, Y. X.; Shi, D. Q. J. Org. Chem. 2017, 37, 2392 (in Chinese).
      (林伟, 蔡琦, 郑纯智, 郑永祥, 史达清, 有机化学, 2017, 37, 2392.

    19. [19]

      (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
      (b) Knoevenagel, E.; Fries, A. Ber. Dtsch. Chem. Ges. 1898, 31, 761.
      (c) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 690.
      (d) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 698.
      (e) Allais, C.; Liéby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
      (f) Shi, Z.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 8584.
      (g) Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 1350.
      (h) Wan, J. P.; Jing, Y. F.; Hu, C. F.; Sheng, S. R. J. Org. Chem. 2016, 81, 6826.
      (i) Li, Y.; Wang, G. D.; Hao, G. F.; Wan, J. P. Tetrahedron Lett. 2019, 60, 219.

    20. [20]

      Bogdal, D. J. Chem. Res., Synop. 1998, 8, 468. 

    21. [21]

      (a) Zhang, M.; Liu, P.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. RSC Adv. 2016, 6, 106160.
      (b) Saikh, F.; De, R.; Ghosh, S. Tetrahedron Lett. 2014, 55, 6171.
      (c) Jia, X. D.; Yu, L. L.; Huo, C. D.; Wang, Y. X.; Liu, J.; Wang, X. C. Tetrahedron Lett. 2014, 55, 264.
      (d) Ko, K. Y.; Kim, J. Y. Tetrahedron Lett. 1999, 40, 3207.
      (e) Shamim, T.; Monika, G.; Paul, S. J. Mol. Catal. A: Chem. 2009, 302, 15.

  • 图 1  磷酸处理前后铌酸表面的NH3程序升温脱附图

    Figure 1  NH3-TPD profiles of niobic acid and niobic acid modified with phosphoric acid

    (a) NA-p, (b) NA

    图 2  化合物4k的单晶图

    Figure 2  Crystal structure of 4k

    图式 1  反应机理前期研究

    Scheme 1  Preliminary mechanistic studies

    图式 2  可能的反应机理

    Scheme 2  Proposed reaction mechanism

    表 1  合成化合物4a反应条件筛选a

    Table 1.  Optimization of the reaction conditions for the synthesis of compound 4a

    Entry Catalyst Solvent Temp./℃ Yieldb/%
    1 H3PO4 (10 mol%) EtOH 120 10
    2 H2SO4 (10 mol%) EtOH 120 23
    3 HClO3S (10 mol%) EtOH 120 26
    4 Amberlyst15 (0.02 g) EtOH 120 32
    5 HZSM-5 (0.02 g) EtOH 120 35
    6 SO4-TiO2 (0.02 g) EtOH 120 38
    7 SO4-ZrO2 (0.02 g) EtOH 120 37
    8 Nb-OH (0.02 g) EtOH 120 46
    9 Nb-OH"PO4 (0.02 g) EtOH 120 63
    10 Nb-OH"SO4 (0.02 g) EtOH 120 55
    11 Nb-OH"NO3 (0.02 g) EtOH 120 58
    12 NaOH (20 mol%) EtOH 120
    13 Cs2CO3 (20 mol%) EtOH 120 trace
    14 Nb-OH"PO4 (0.02 g) EG 120 65
    15 Nb-OH"PO4 (0.02 g) GL 120 69
    16 Nb-OH"PO4 (0.02 g) DMF 120 51
    17 Nb-OH"PO4 (0.01 g) GL 120 54
    18 Nb-OH"PO4 (0.015 g) GL 120 70
    19 Nb-OH"PO4 (0.025 g) GL 120 67
    20 Nb-OH"PO4 (0.015 g) GL 100 45
    21 Nb-OH"PO4 (0.015 g) GL 110 57
    22 Nb-OH"PO4 (0.015 g) GL 130 76
    23 Nb-OH"PO4 (0.015 g) GL 140 71
    a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), solvent (1 mL), 20 min; b Yield was determined by HPLC-MS.
    下载: 导出CSV

    表 2  香豆素修饰[4, 3-d]吡唑并[3, 4-b]吡啶衍生物4的合成a

    Table 2.  Synthesis of coumarin-fused pyrazolo[3, 4-b]pyr idine derivatives 4

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  814
  • HTML全文浏览量:  38
文章相关
  • 发布日期:  2020-02-25
  • 收稿日期:  2019-07-19
  • 修回日期:  2019-08-25
  • 网络出版日期:  2019-02-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章