Citation: Zhao Yating, Zeng Junjie, Xia Wujiong. Visible-Light-Induced α-C(sp3)—H Amination Reactions of Tertiary Amines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(1): 133-139. doi: 10.6023/cjoc201907002 shu

Visible-Light-Induced α-C(sp3)—H Amination Reactions of Tertiary Amines

  • Corresponding author: Zhao Yating, liveagain@126.com Xia Wujiong, xiawj@hit.edu.cn
  • Received Date: 2 July 2019
    Revised Date: 20 August 2019
    Available Online: 5 January 2019

    Fund Project: the Start-up Funds of Quzhou University BSYJ201714Project supported by the National Natural Science Foundation of China (Nos. 21901141, 21672047), and the Start-up Funds of Quzhou University (No. BSYJ201714)the National Natural Science Foundation of China 21672047the National Natural Science Foundation of China 21901141

Figures(4)

  • Herein, the visible-light-induced α-C(sp3)—H amination reactions of tertiary amines were reported. By using readily available 1, 3-dioxoisoindolin-2-yl benzoate as precursor of N-radical and blue LEDs as green and sustainable energy source, the α-C(sp3)—H bonds of various N, N-dimethylaniline derivatives were aminated directly. Based on radical trapping experiment and documented literature, a mechanism involving radicals coupling was proposed. This method featured in mild reaction conditions and good functional group tolerance, which provides a simple and practical protocol to the modification of tertiary amines.
  • 加载中
    1. [1]

      (a) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
      (b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
      (c) Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.
      (d) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.

    2. [2]

      (a) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
      (b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
      (c) Kärkäs, M. D. ACS Catal. 2017, 7, 4999.
      (d) Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591.

    3. [3]

      (a) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
      (b) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
      (c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. Chin. Chem. 2019, 62, 24.

    4. [4]

      For selected examples, see: (a) Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
      (b) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445.
      (c) Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch, H.; König, B. Org. Biomol. Chem. 2012, 10, 3556.
      (d) Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.

    5. [5]

      For selected examples, see: (a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
      (b) Zhao, G.; Yang, C.; Guo, L; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012, 48, 2337.

    6. [6]

    7. [7]

      (a) Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
      (b) Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.
      (c) Zhang, P.; Xiao, T.; Xiong, S.; Dong, X.; Zhou, L. Org. Lett. 2014, 16, 3264.
      (d) Liu, X.; Ye, X.; Bureš, F.; Liu, H.; Jiang, Z. Angew. Chem. Int. Ed. 2015, 54, 11443.
      (e) Li, W.; Duan, Y.; Zhang, M.; Cheng, J.; Zhu, C. Chem. Commun. 2016, 52, 7596.
      (f) Xu, G.-Q.; Xu. J.-T.; Feng, Z.-T.; Liang, H.; Wang, Z.-Y.; Qin, Y.; Xu, P.-F. Angew. Chem., Int. Ed. 2018, 57, 5110.

    8. [8]

      Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.  doi: 10.1021/ja00024a074

    9. [9]

      Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 901.
       

    10. [10]

      (a) Fu, C.-M.; Shang, R.; Zhao, B.; Fu, Y. Science 2019, 363, 1429.
      (b) Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
      (c) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.

    11. [11]

      Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.  doi: 10.1021/ja501906x

    12. [12]

      (a) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
      (b) Zhang, P.; Xiao, T.; Xiong, S.; Dong, X.; Zhou, L. Org. Lett. 2014, 16, 3264.
      (c) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.

    13. [13]

      Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549.  doi: 10.1021/ja3113559

    14. [14]

      Kiyokawa, K.; Kosaka, T.; Kojima, T.; Minakata, S. Angew. Chem., Int. Ed. 2015, 54, 13719.  doi: 10.1002/anie.201506805

    15. [15]

      Heine, H. W.; Winstead, M. B.; Blair, R. P. J. Am. Chem. Soc. 1956, 78, 672.  doi: 10.1021/ja01584a041

    16. [16]

      Singh, S. K.; Chandna, N.; Jain, N. Org. Lett. 2017, 19, 1322.  doi: 10.1021/acs.orglett.7b00125

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(21)
  • Abstract views(1204)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return