基于柱[5]芳烃的新型双-[1]轮烷的设计与合成

张润淼 王陈威 孙晶 颜朝国 姚勇

引用本文: 张润淼, 王陈威, 孙晶, 颜朝国, 姚勇. 基于柱[5]芳烃的新型双-[1]轮烷的设计与合成[J]. 有机化学, 2019, 39(12): 3483-3489. doi: 10.6023/cjoc201906006 shu
Citation:  Zhang Runmiao, Wang Chenwei, Sun Jing, Yan Chaoguo, Yao Yong. Design and Construction of Pillar[5]arene-Based Bis-[1]rotaxane[J]. Chinese Journal of Organic Chemistry, 2019, 39(12): 3483-3489. doi: 10.6023/cjoc201906006 shu

基于柱[5]芳烃的新型双-[1]轮烷的设计与合成

    通讯作者: 颜朝国, cgyan@yzu.edu.cn; 姚勇, yaoyong1986@ntu.edu.cn
  • 基金项目:

    国家自然科学基金(Nos.21801139,21871227)、江苏省自然科学基金(No.BK20180942)、南通大学高层次人才启动基金(No.03083004)、南通大学大型仪器平台开放基金(No.KFJN1814)资助项目

摘要: 以不同长度的亚烷基二胺单元作为柱[5]芳烃边缘侧链的一系列柱[5]单酰胺衍生物,在氯仿中能够形成准[1]轮烷.基于这一中间体准[1]轮烷的合成,通过柱[5]单酰胺衍生物和双水杨醛的缩合反应,成功构建了8个柱芳烃的机械自锁分子(MSMs),即双-[1]轮烷.通过多种方法详细地对新合成的双-[1]轮烷进行了研究,包括1H NMR,13C NMR,2D NOESY NMR和MS分析,发现这类新型MSMs与Cu2+有较强的识别作用,两者之间以1:2进行络合.

English

  • 随着冠醚[1]作为第一代超分子大环主体化合物的出现, 超分子化学[2]逐渐成为许多科学家研究的重要领域之一, 在纳米科学、材料科学和生物科学等领域得到广泛应用[3].机械互锁分子(MIMs)[4]已经在超分子化学中得到了广泛的研究, 为先进的超分子系统[5](如轮烷[6]、索烃[7]、分子梭[8]、开关[9]和探针[10])的构建提供了无限的可能, 也使超分子化学适用于分子机器[11]、化学探针[12]和药物输送[13]的构建.虽然MIMs的研究近些年快速发展, 但一类新型的机械MIMs, 即自锁分子(MSMs)的研究报道却很少, 这是由于MSMs的轴和外圈的轮在一个分子中, 其合成分离较为复杂, 限制了机械自锁分子的快速发展.在有限的机械自锁分子中, 准[1]轮烷是基本和典型的代表[14].在构建机械自锁分子的过程中, 主体提供的空腔大小和性质是最关键的.作为冠醚、环糊精、杯芳烃和葫芦脲之后相对较新的大环主体化合物柱[n]芳烃[15, 16], 由于具有富电子空腔、对称的柱状结构和易于修饰的边缘, 已被广泛应用于构建新的超分子聚合物、分子器件、人工跨膜通道以及化学和物理响应材料[17].柱[5]芳烃是柱芳烃家族中应用最广泛的一类, 因此, 单官能化柱[5]芳烃是构建准[1]轮烷的最通用的候选化合物[18].例如, Ogoshi等[19]报道了基于含有辛基三甲基铵基团的柱[5]芳烃的准轮烷, 其在氯仿中表现出自络合的性质.曹德榕等[20]报道了基于单酯化柱[5]芳烃的准[1]轮烷, 它可以选择性地结合不同的二卤代烷烃.薛敏等[21]通过单羧酸官能化的柱[5]芳烃与长链烷基胺的反应, 高产率地制备了基于柱[5]芳烃的[1]轮烷.王乐勇等[22]报道了通过缩合反应形成一个基于芳烃的互锁准[1]索烃和准[1]轮烷(一个包括二氨基烷烃和一个酸官能化的柱[5]芳烃, 另一个包括二异氰酸酯和胺官能化的柱[5]芳烃), 它显示出溶剂和客体的不同响应.杨英威等[23]报道了一种带有咪唑鎓盐基团的单官能化柱[5]芳烃, 即使在氯仿中高浓度也能形成稳定的准[1]轮烷.近期, 刘育等[24]报道了基于几个柱[5]芳烃的准[1]索烃, 其中柱芳烃环由两个酰胺基团连接.

    我们课题组[25]成功合成单官能化柱[5]芳烃席夫碱、尿素、吡啶亚胺衍生物, 在结构确定过程中, 发现这些单官能化柱[5]芳烃在溶液和固体状态下均可以发生自络合形成较稳定准[1]轮烷.基于此, 2016年, 我们[26]报道了一种基于二烯基柱[5]芳烃的准[1]轮烷, 并研究了自锁准[1]轮烷的稳定性.最近, 我们课题组[27]成功实现以三联吡啶封端的自锁[1]轮烷, 并探究了形成[1]轮烷的条件.在本项研究中, 先合成了柱[5]单酰胺衍生物准[1]轮烷, 然后末端的胺基与双水杨醛类物质[28]进行缩合反应得到目标产物双-[1]轮烷.

    目标化合物基于柱[5]芳烃的双-[1]轮烷的合成路线如Scheme 1所示.首先, 进行化合物1与丙、丁二胺和己二胺以1:1化学计量比反应, 得到较为稳定的准[1]轮烷.在制备准轮烷的过程中, 二胺化合物的投料是1的20倍, 以保证二胺化合物的一个胺基和化合物1反应.通过1H NMR研究可以观察到在负方向的化学位移信号, 表明胺基烷烃链穿入柱[5]芳烃的空腔内, 然后这些中间体准轮烷与化合物2a~2c经过缩合反应, 以可观产率获得基于桥联柱[5]芳烃的双-[1]轮烷3a~3h.

    双[1]轮烷3a~3h通过1H NMR、13C NMR、2D NMR (1H-1H NOESY NMR)、IR和高分辨质谱MS等手段进行表征.在席夫碱桥联双柱[5]芳烃3a~3h1H NMR谱图的负场方向, 可以明显观察到一些信号峰. 8种双[1]轮烷在负场方向氢的个数如表 1所示. 图 1表示3a在CDCl3中的1H NMR谱, 根据负场中的质子数, 将它们归属于3a的胺基烷烃链上质子H1-4, 由于相应的CH2受到柱芳烃空腔的电子云的屏蔽作用从而使化学位移向高场移动(Δδ =-0.07~-2.27), 这说明两个胺基烷烃链穿入柱芳烃的两个空腔中, 表明形成了[1]轮烷.这一结论是与我们课题组之前合成的基于单酰胺功能化柱[5]芳烃的[1]轮烷所得结论一致[29].在2D NOESY NMR图谱(图 2)中, 明显观察到己基质子H1-43a的柱[5]芳烃侧链亚甲基质子Ha(图 2, A、B、C、D)、H1-4与NH质子Hb(图 2, E、F)以及H1-4与苯环质子Hc (G、H、I、J)之间存在明确的相关信号, 这也证实了烷基链穿入柱芳烃空腔中, 形成了双-[1]轮烷的机械互锁结构.其他7个基于柱芳烃的双-[1]轮烷同样通过以上手段进行表征.通过对比发现双-[1]轮烷中氢在δ 0以下出峰的位置和个数与烷基二胺的链长n有关, 进一步说明柱芳烃套在烷基二胺的烷基链上.

    表 1

    表 1  8个双[1]轮烷产率及核磁对比
    Table 1.  Yields of bis[1]rotaxanes and their difference on 1H NMR
    下载: 导出CSV
    Compd. n m Yield/% Number of H (δ<0)
    3a 4 1 66.5 16 (CH2)
    3b 4 2 54.6 16 (CH2)
    3c 2 1 83.4 8 (CH2)
    3d 2 2 65.3 8 (CH2)
    3e 2 4 64.3 8 (CH2)
    3f 1 1 81.1 8 (CH2)
    3g 1 2 65.2 8 (CH2)
    3h 1 4 52.6 8 (CH2)

    图 1

    图 1.  双[1]轮烷3a的核磁氢谱部分图(400 MHz, 298 K, CDCl3)
    Figure 1.  Partial 1H NMR spectrum (400 MHz, 298 K, CDCl3) of bis-[1]rotaxane 3a

    图 2

    图 2.  双[1]轮烷3a1H-1H NOESY图谱(600 MHz, 298K, CDCl3)
    Figure 2.  1H-1H NOESY spectrum (600 MHz, 298 K, CDCl3) of bis-[1]rotaxane 3a

    图式 1

    图式 1.  双-[1]轮烷3a~3h合成路线
    Scheme 1.  Synthesis of bis-[1]rotaxane 3a~3h

    合成的以席夫碱桥联双柱[5]芳烃为骨架的双-[1]轮烷具有亚胺和羟基的结构单元, 可作为识别位点, 通过氢键相互作用可以作为良好的离子结合位点.首先研究了这类化合物对金属离子的选择性(Cu2+、Co2+、Zn2+、Ni3+、Cd2+和Pb2+, c=1×10-4 mol/L), 化合物3a在CH2Cl2/MeOH中的紫外-可见光光谱数据测定(图 3)表明, 3a具有两个吸收带, 即280 nm附近的强吸收和398 nm处相对较弱的吸收.前者是配体芳环上共轭体系的π-π*跃迁产生, 后者是由碳氮双键的π-π*跃迁产生.在加入金属离子后谱图发生了偏移, 席夫碱桥联的双-[1]轮烷3a对Ni3+、Cd2+和Pb2+几乎没有识别作用, 而对Cu2+作用最强.由于Cu2+与席夫碱作用, 席夫碱的紫外吸收由原来的390 nm移动至350 nm.通过3a与不同浓度Cu2+的紫外滴定实验, 发现两者之间存在着滴定平衡.当Cu(OAc)2浓度为配体浓度的2倍以后, 谱图不再发生变化, 这说明该席夫碱与铜离子之间存在滴定平衡, 络合比为1:2(图 4).

    图 3

    图 3.  双[1]轮烷3a与不同金属离子的紫外吸收图
    Figure 3.  Ultraviolet absorption diagram of bis-[1]rotaxane 3a and different metal ions

    图 4

    图 4.  双[1]轮烷3a与不同浓度的Cu2+离子的络合比曲线
    Figure 4.  Complex ratio curve of bis-[1]rotaxane 3a with differ- rent concentrations of Cu2+

    基于准轮烷的合成, 通过简单的缩合反应, 成功合成了8个以席夫碱桥联的[5]芳烃为骨架的双-[1]轮烷.对于较长的桥联链的双柱[5]芳烃3a~3h, 在溶液中观察到两个柱[5]芳烃单元和桥联链存在穿线行为.此研究扩展了基于柱[5]芳烃的分子系统, 并为合成自锁柱[5]芳烃分子拓展了道路.合成的席夫碱桥联双柱[5]芳烃与不同金属离子存在识别作用, 尤其是对Cu2+识别作用最强, 并以1:2比进行络合, 为检测金属离子传感器提供材料支持.

    除非另有说明, 所有反应均在开放的气氛中进行, 所有试剂均来自商业来源.用Focus X-4装置测定熔点, 未经校正.所有产率均以分离提纯后的计算结果. NMR谱在Ailent 400和AVANCE 600核磁共振波谱仪上测定, 内标为四甲基硅烷(TMS), 以溶剂信号作为内参.在Bruker DPX 600MHz光谱仪上进行2D NOESY实验, 在Bruker maXis超高分辨飞行时间质谱仪测定HR-ESI- MS.

    3.2.1   化合物2a~2c的合成

    根据报道的方法[28]合成双水杨醛化合物2a~2c.

    3.2.2   化合物3a~3h的合成

    根据报道的方法[25a]合成酰氨基官能化的柱[5]芳烃1a、1b、1c (0.2 mmol), 然后在无水乙醇中加入双水杨醛类化合物2a~2c (0.1 mmol), 2~3 d醋酸, 将混合物加热回流下搅拌6 h.抽滤, 取滤饼, 用乙醇重结晶, 得到纯产物.

    双[1]轮烷柱芳烃3a:黄色固体, 产率66.5%. m.p. 165.5~167.4 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.06 (s, 2H, CH=N), 7.12 (d, J=8.3 Hz, 2H, ArH), 7.00~6.78 (m, 20 H, ArH), 6.40 (d, J=9.1 Hz, 4H, ArH), 5.48 (d, J=7.1 Hz, 2H, NH), 4.60 (s, 4H, CH2), 4.09 (s, 4H, CH2), 3.95~3.49 (m, 74H, 48OCH3, 26CH2), 2.90 (s, 2H, CH2), 2.59 (t, J=8.5 Hz, 4H, CH2), 2.03 (s, 4H, CH2), 1.71 (dt, J=14.6, 7.4 Hz, 4H, CH2), 1.50 (q, J=7.4 Hz, 4H, CH2), 0.92 (t, J=7.4 Hz, 6H, CH3), -0.04 (s, 4H, CH2), -0.62 (s, 2H, CH2), -0.74 (s, 2H, CH2), -1.86 (s, 4H, CH2), -2.24 (s, 4H, CH2); 13C NMR (101 MHz, CDCl3) δ: 168.63, 167.59, 163.59, 162.30, 150.89, 150.59, 150.46, 150.34, 150.31, 150.27, 150.22, 150.08, 149.95, 146.88, 132.37, 129.30, 129.23, 128.56, 128.41, 128.30, 128.23, 127.81, 127.15, 115.26, 114.44, 114.03, 113.66, 112.92, 112.72, 112.63, 112.14, 112.04, 111.74, 106.66, 102.04, 68.39, 67.48, 65.77, 56.69, 56.18, 56.05, 55.75, 55.71, 55.63, 55.39, 55.20, 55.12, 37.51, 32.01, 30.68, 29.91, 29.11, 29.03, 28.70, 28.51, 27.23, 25.89, 24.29, 22.78, 19.56, 14.05; IR (KBr) v: 3415, 2936, 1688, 1626, 1500, 1466, 1400, 1296, 1213, 1048, 928, 879, 775, 705, 648 cm-1; HRMS (ESI) calcd for C128H155N4O26 ([M+H]+): 2165.0950, found 2165.0958.

    双[1]轮烷柱芳烃3b:黄色固体, 产率54.6%. m.p. 140.8~142.3 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.05 (s, 2H, CH=N), 7.11 (d, J=8.3 Hz, 2H, ArH), 6.98 (s, 4H, ArH), 6.92 (d, J=5.6 Hz, 6H, ArH), 6.88 (s, 4H, ArH), 6.81 (d, J=3.7 Hz, 6H, ArH), 6.39 (d, J=8.4 Hz, 4H, ArH), 5.47 (d, J=7.9 Hz, 2H, NH), 4.59 (s, 4H, CH2), 4.03 (t, J=6.5 Hz, 4H, CH2), 3.90~3.67 (m, 74H, 48 OCH3, 26 CH2), 2.89 (s, 2H, CH2), 2.59 (t, J=8.4 Hz, 4H, CH2), 1.87 (t, J=8.5 Hz, 8H, CH2), 1.74~1.67 (m, 4H, CH2), 1.49 (q, J=7.4 Hz, 4H, CH2), 0.92 (t, J=7.4 Hz, 6H, CH3), -0.04 (s, 4H, CH2), -0.63 (s, 2H, CH2), -0.75 (s, 2H, CH2), -1.88 (d, J=25.1 Hz, 4H, CH2), -2.24 (s, 4H, CH2); 13C NMR (101 MHz, CDCl3) δ: 168.44, 167.58, 163.68, 162.30, 150.90, 150.59, 150.46, 150.35, 150.32, 150.28, 150.23, 150.08, 149.96, 146.88, 132.31, 129.30, 129.28, 129.23, 128.55, 128.53, 128.41, 128.30, 128.23, 127.81, 127.15, 115.25, 114.43, 114.01, 113.66, 112.92, 112.73, 112.63, 112.15, 112.06, 111.87, 111.69, 106.73, 102.01, 101.92, 68.37, 67.88, 67.83, 65.78, 56.82, 56.17, 56.04, 55.75, 55.70, 55.63, 55.39, 55.19, 55.12, 37.52, 32.01, 30.71, 29.92, 29.07, 29.02, 28.70, 28.52, 27.23, 26.66, 25.90, 25.86, 24.32, 22.80, 19.56, 14.05; IR (KBr) v: 3410, 2937, 2859, 2036, 1681, 1625, 1504, 1459, 1399, 1296, 1212, 1112, 1043, 928, 873, 845, 775, 711, 647, 546 cm-1; HRMS (ESI) calcd for C130H159N4O26 ([M+H]+): 2193.1271, found 2193.1276.

    双[1]轮烷柱芳烃3c:黄色固体, 产率83.4%. m.p. 194.8~196.1 ℃; 1H NMR (400 MHz, CDCl3) δ: 13.20 (s, 2H, OH), 7.23 (s, 2H, ArH), 7.01~6.91 (m, 14H, ArH), 6.83 (d, J=9.8 Hz, 4H, ArH), 6.77 (s, 4H, 2 ArH, 2 CH=N), 6.29~6.22 (m, 4H, ArH), 5.45 (s, 2H, NH), 4.59 (s, 4H, CH2), 4.08 (s, 4H, CH2), 3.83~3.73 (m, 56H, 48 OCH3, 8CH2), 3.71 (s, 6H, CH2), 3.65 (s, 4H, CH2), 3.58 (s, 4H, CH2), 3.40 (s, 4H, CH2), 2.87 (s, 2H, CH2), 2.04 (s, 4H, CH2), 1.80 (s, 4H, CH2), 1.55 (dd, J=7.6, 3.6 Hz, 4H, CH2), 1.00 (t, J=7.5 Hz, 6H, CH3), 0.29 (d, J=43.9 Hz, 4H, CH2), -0.92 (s, 4H, CH2), -1.91 (d, J=31.0 Hz, 4H, CH2); 13C NMR (101 MHz, CDCl3) δ: 172.60, 167.13, 164.12, 161.56, 151.64, 150.65, 150.61, 150.51, 150.39, 150.31, 150.26, 150.18, 149.59, 147.61, 133.24, 130.76, 129.59, 128.63, 128.54, 128.17, 128.15, 128.09, 127.38, 127.30, 117.94, 114.88, 113.88, 113.78, 113.48, 113.36, 112.97, 112.83, 112.45, 111.93, 111.37, 105.33, 102.25, 70.36, 67.26, 65.70, 55.99, 55.96, 55.91, 55.81, 55.75, 55.61, 55.49, 55.40, 51.15, 36.33, 32.01, 30.48, 29.51, 29.23, 29.04, 28.42, 28.16, 25.97, 25.67, 22.75, 19.48, 14.13; IR (KBr) v: 3415, 2940, 1685, 1624, 1502, 1460, 1399, 1299, 1213, 1112, 1045, 929, 873, 776, 707, 648 cm-1; HRMS (ESI) calcd for C124H147N4O26 ([M+H]+): 2109.0346, found 2109.0337.

    双[1]轮烷柱芳烃3d:黄色固体, 产率64.3%. m.p. 168.0~170.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.23 (d, J=8.5 Hz, 2H, ArH), 7.01 (s, 2H, CH=N), 7.00~6.88 (m, 12H, ArH), 6.83 (d, J=9.2 Hz, 4H, ArH), 6.76 (dd, J=10.0, 2.8 Hz, 4H, ArH), 6.25 (d, J=10.3 Hz, 4H, ArH), 5.45 (s, 2H, NH), 4.59 (s, 3H, CH2), 4.14 (s, 2H, CH2), 4.01 (t, J=6.5 Hz, 4H, CH2), 3.96~3.61 (m, 64H, 48OCH3, 16CH2), 3.57 (s, 4H, CH2), 3.39 (s, 4H, CH2), 2.86 (s, 2H, CH2), 1.88 (t, J=6.9 Hz, 4H, CH2), 1.76 (d, J=7.3 Hz, 4H, CH2), 1.60 (s, 4H, CH2), 1.54 (dd, J=7.5, 3.7 Hz, 4H, CH2), 1.00 (t, J=7.3 Hz, 6H, CH3), 0.34 (s, 2H, CH2), 0.23 (s, 2H, CH2), -0.92 (d, J=25.7 Hz, 4H, CH2), -1.90 (d, J=35.9 Hz, 4H, CH2); 13C NMR (101 MHz, CDCl3) δ: 172.49, 167.14, 164.23, 161.57, 151.64, 150.65, 150.56, 150.52, 150.39, 150.31, 150.27, 150.19, 149.60, 147.61, 133.20, 130.75, 130.74, 129.59, 128.63, 128.53, 128.47, 128.46, 128.19, 128.16, 128.10, 127.38, 117.90, 114.89, 113.89, 113.70, 113.53, 113.47, 113.39, 113.00, 112.83, 112.50, 112.48, 112.45, 111.94, 111.31, 105.43, 102.22, 70.34, 67.69, 65.70, 55.99, 55.96, 55.92, 55.80, 55.76, 55.57, 55.52, 55.49, 55.39, 51.22, 51.22, 36.34, 36.33, 32.00, 29.46, 29.18, 29.04, 28.40, 26.00, 25.65, 22.76, 19.47, 14.11; IR (KBr) v: 3406, 2940, 2837, 1684, 1625, 1502, 1460, 1399, 1299, 1212, 1044, 928, 877, 776, 707, 649 cm-1; HRMS (ESI) calcd for C126H151N4O26 ([M+H]+): 2137.0653, found 2137.0650.

    双[1]轮烷柱芳烃3e:黄色固体, 产率65.3%. m.p. 137.8~139.5 ℃; 1H NMR (400 MHz, CDCl3) δ: 13.10 (s, 2H, OH), 7.22 (d, J=8.6 Hz, 2H, ArH), 7.00 (s, 2H, CH=N), 6.99~6.90 (m, 12H, ArH), 6.82 (d, J=9.5 Hz, 4H, ArH), 6.77 (d, J=3.0 Hz, 4H, ArH), 6.27~6.20 (m, 4H, ArH), 5.46 (s, 2H, NH), 4.59 (s, 4H, CH2), 4.13 (s, 2H, CH2), 3.98 (t, J=6.6 Hz, 4H, CH2), 3.87~3.66 (m, 60 H, 48OCH3, 12CH2), 3.57 (s, 6H, CH2), 3.38 (s, 6H, CH2), 2.86 (s, 2H, CH2), 1.81 (dt, J=16.0, 8.0 Hz, 16H, CH2), 1.51 (dt, J=9.2, 4.7 Hz, 8H, CH2), 0.99 (t, J=7.4 Hz, 6H, CH3), 0.33 (s, 2H, CH2), 0.21 (s, 2H, CH2), -0.92 (d, J=28.4 Hz, 4H, CH2), -1.92 (d, J=32.5 Hz, 4H, CH2); 13C NMR (101 MHz, CDCl3) δ: 172.51, 167.14, 164.30, 161.53, 151.63, 150.64, 150.51, 150.39, 150.37, 150.29, 150.25, 150.18, 149.57, 147.58, 133.16, 130.73, 129.57, 128.62, 128.53, 128.51, 128.45, 128.15, 128.08, 127.36, 127.29, 117.89, 114.86, 113.86, 113.48, 113.35, 112.95, 112.82, 112.44, 111.92, 111.24, 105.46, 102.20, 70.32, 67.85, 65.68, 55.98, 55.95, 55.90, 55.80, 55.74, 55.48, 55.39, 51.16, 36.34, 32.00, 30.47, 29.58, 29.46, 29.20, 28.39, 28.13, 26.12, 25.65, 22.75, 19.46, 14.11; IR (KBr) v: 3406, 2936, 2857, 2480, 2035, 1682, 1625, 1503, 1458, 1398, 1298, 1212, 1112, 1043, 929, 875, 776, 711, 648, 550 cm-1; HRMS (ESI) calcd for C130H159N4O26 ([M+ H]+): 2193.1293, found 2193.1276.

    双[1]轮烷柱芳烃3f:黄色固体, 产率81.1%. m.p. 206.2~208.6 ℃; 1H NMR (400 MHz, CDCl3) δ: 13.01 (s, 2H, OH), 7.18 (d, J=8.7 Hz, 2H, ArH), 7.06~6.79 (m, 18H, ArH), 6.69 (s, 2H, ArH), 6.32 (s, 2H, CH=N), 6.30~6.22 (m, 4H, ArH), 4.51 (s, 4H, CH2), 4.32 (d, J=8.7 Hz, 2H, NH), 4.17~3.22 (m, 80H, 48OCH3, 32CH2), 2.03 (s, 4H, CH2), 1.82 (d, J=8.4 Hz, 4H, CH2), 1.58~1.53 (m, 4H, CH2), 1.00 (t, J=7.4 Hz, 6H, CH3), -0.05~-0.20 (m, 4H, CH2), -1.71 (s, 2H, CH2), -1.88 (s, 2H, CH2); 13C NMR (101 MHz, CDCl3) δ: 170.35, 166.77, 163.59, 162.31, 151.46, 150.84, 150.56, 150.49, 150.21, 150.13, 149.71, 148.56, 132.93, 131.73, 129.86, 129.22, 128.55, 128.44, 128.17, 127.87, 127.78, 125.85, 118.09, 114.13, 113.95, 113.93, 113.60, 113.37, 113.21, 112.39, 112.24, 111.57, 105.50, 101.90, 70.37, 67.29, 65.95, 56.10, 55.95, 55.72, 55.61, 55.45, 55.20, 55.18, 55.02, 50.86, 36.06, 31.92, 30.08, 28.62, 28.20, 27.02, 25.97, 19.47, 14.05; IR (KBr) v: 3407, 2934, 1685, 1627, 1499, 1465, 1399, 1296, 1213, 1045, 928, 880, 775, 705, 648 cm-1; HRMS (ESI) calcd for C122H143N4O26 ([M+ H]+): 2081.0058, found 2081.0024.

    双[1]轮烷柱芳烃3g:黄色固体, 产率65.2%. m.p.154.7~156.2 ℃; 1H NMR (400 MHz, CDCl3) δ: 13.00 (s, 2H, OH), 7.16 (d, J=8.6 Hz, 2H, ArH), 7.04 (d, J=4.8 Hz, 4H, ArH), 7.01~6.91 (m, 8H, ArH), 6.87 (s, 2H, ArH), 6.81 (d, J=6.8 Hz, 4H, ArH), 6.68 (s, 2H, ArH), 6.32 (s, 2H, CH=N), 6.30~6.19 (m, 4H, ArH), 4.50 (s, 4H, CH2), 4.32 (d, J=8.5 Hz, 2H, NH), 4.12 (s, 2H, CH2), 4.07~3.49 (m, 66H, 48OCH3, 18CH2), 3.42 (s, 6H, CH2), 3.26 (s, 6H, CH2), 1.84 (d, J=16.8 Hz, 8H, CH2), 1.55 (q, J=7.5 Hz, 8H, CH2), 1.00 (t, J=7.4 Hz, 6H, CH3), -0.07~-0.21 (m, 4H, CH2), -1.72 (s, 2H, CH2), -1.89 (s, 2H, CH2); 13C NMR (101 MHz, CDCl3) δ: 221.34, 170.70, 166.82, 163.83, 162.29, 151.47, 150.85, 150.58, 150.51, 150.21, 150.15, 149.71, 148.55, 132.96, 131.71, 129.87, 129.22, 128.59, 128.46, 128.20, 127.86, 127.81, 126.50, 125.85, 118.10, 114.19, 113.94, 113.62, 113.40, 113.23, 112.39, 112.23, 112.18, 111.41, 106.85, 105.61, 101.90, 70.39, 67.73, 65.93, 56.16, 55.96, 55.73, 55.62, 55.48, 55.21, 55.07, 50.68, 36.06, 32.04, 31.92, 30.09, 29.19, 28.60, 28.18, 27.01, 25.99, 19.47, 14.05; IR (KBr) v: 3391, 2935, 1681, 1627, 1499, 1465, 1399, 1297, 1213, 1045, 927, 881, 855, 774, 702, 648 cm-1; HRMS (ESI) calcd for C124H147N4O26 ([M+H]+): 2109.0387, found 2109.0337.

    双[1]轮烷柱芳烃3h:黄色固体, 产率52.6%. m.p. 142.8~144.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.99 (s, 2H, OH), 7.14 (d, J=8.7 Hz, 2H, ArH), 7.05~6.90 (m, 12H, ArH), 6.85 (s, 2H, ArH), 6.79 (d, J=7.7 Hz, 4H, ArH), 6.67 (s, 2H, ArH), 6.30 (s, 2H, CH=N), 6.25 (dd, J=8.6, 2.4 Hz, 2H, ArH), 6.20 (d, J=2.2 Hz, 2H, ArH), 4.49 (s, 4H, CH2), 4.30 (d, J=7.7 Hz, 2H, NH), 4.10 (s, 2H, CH2), 4.02~3.48 (m, 66H, 48OCH3, 18CH2), 3.41 (s, 6H, CH2), 3.24 (s, 6H, CH2), 1.81 (t, J=7.6 Hz, 8H, CH2), 1.51 (dq, J=14.0, 7.3 Hz, 8H, CH2), 1.37 (s, 8H, CH2), 0.98 (t, J=7.4 Hz, 6H, CH3), -0.15 (dd, J=20.0, 11.4 Hz, 4H, CH2), -1.73 (s, 2H, CH2), -1.90 (s, 2H, CH2); 13C NMR (101 MHz, CDCl3) δ: 170.33, 166.79, 164.30, 163.78, 163.20, 162.30, 151.45, 150.84, 150.54, 150.50, 150.19, 150.13, 149.69, 148.53, 132.86, 132.51, 131.68, 129.84, 129.21, 128.54, 128.44, 128.16, 127.84, 127.77, 126.49, 125.83, 118.02, 114.12, 113.92, 113.59, 113.36, 113.21, 112.38, 112.23, 112.12, 112.09, 111.44, 106.86, 105.64, 101.86, 101.71, 77.37, 70.34, 68.07, 67.90, 65.93, 56.11, 55.95, 55.72, 55.61, 55.44, 55.19, 55.03, 50.88, 36.09, 32.05, 31.92, 30.09, 29.58, 29.50, 29.47, 29.41, 29.36, 29.22, 29.20, 29.08, 28.63, 28.61, 28.17, 27.01, 26.12, 26.08, 26.00, 19.47, 14.06; IR (KBr) v: 3397, 2933, 1683, 1626, 1500, 1465, 1399, 1297, 1213, 1045, 928, 880, 775, 703, 648 cm-1; HRMS (ESI) calcd for C128H154N4O26 ([M+H]+): 2165.0966, found 2165.0958.

    辅助材料(Supporting Information)  化合物3a~3h的HRMS、1H NMR和13C NMR图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.


    1. [1]

      Krakowiak, K. E.; Bradshaw, J.; Zamecka-Krakowiak, D. J. Chem. Rev. 1989, 89, 929. doi: 10.1021/cr00094a008

    2. [2]

      (a) Lehn, J. M. Science 1993, 260, 1762.
      (b) Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Chin. Chem. Lett. 2019, 30, 27.
      (c) He, M.; Chen, L.; Jiang, B.; Tan, H.; Yang, H. Chin. Chem. Lett., 2019, 30, 131.

    3. [3]

      Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. doi: 10.1021/cr9601324

    4. [4]

      (a) Stoddart, J. F. Angew. Chem. Int. Ed. 2017, 56, 11094.
      (b) Lohmann, F.; Weigandt, J.; Valero, J.; Famulok, M. Angew. Chem. Int. Ed. 2014, 53, 10372.
      (c) Fahrenbach, A. C. Acc. Chem. Res. 2014, 47, 482.
      (d) Fahrenbach, A. C.; Bruns, C. J.; Cao, D.; Stoddart, J. F. Acc. Chem. Res. 2012, 45, 1581.
      (e) Weng, G.-H.; Zhu, B.; Ye, Y.; Li, S. Chin. J. Org. Chem. 2015, 35, 309(in Chinese).
      (翁官欢, 朱彬, 叶杨, 李世军, 有机化学, 2015, 35, 309.)
      (f) Wang, H.; Kan, J.; Bian, B.; Chen, Q.; Tao, Z.; Xiao, X. Chin. J. Org. Chem. 2018, 38, 3094(in Chinese).
      (王海燕, 阚京兰, 边炳, 陈青, 陶朱, 肖昕, 有机化学, 2018, 38, 3094.)
      (g) Huo, B.; Li, B.; Su, H.; Zeng, X.; Xu, K.; Cui, L. Chin. J. Org. Chem. 2019, 39, 1990(in Chinese).
      (霍博超, 李斌, 苏杭, 曾宪强, 徐凯迪, 崔雷, 有机化学, 2019, 39, 1990.)

    5. [5]

      (a) Amabilino, D. B.; Perez-Garcia, L. Chem. Soc. Rev. 2009, 38, 1562.
      (b) Ma, X.; Tian, H. Chem. Soc. Rev. 2010, 39, 70.
      (c) Forgan, R. S.; Sauvage, J. P.; Stoddart, J. F. Chem. Rev. 2011, 111, 5434.
      (d) Dongen, S. F. M. van; Cantekin, S.; Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Chem. Soc. Rev. 2014, 43, 99.
      (e) Xue, M.; Yang, Y.; Chi, X.; Yan, X.; Huang, F. Chem. Rev. 2015, 115, 7398.

    6. [6]

      (a) Cao, J.; Ma, X.; Min, M. Chem. Commun. 2014, 50, 3224.
      (b) Leigh, D. A.; Marcos, V.; Nalbantoglu, T. J. Am. Chem. Soc. 2017, 139, 7104.
      (c) Niu, Z. B.; Gibson, H. W. Chem. Rev. 2009, 109, 6024.
      (d) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643.
      (e) Balzani, V.; Gómez-López, M.; Stoddart, J. F. Acc. Chem. Res. 1998, 31, 405.
      (f) Harada, A.; Takashima, Y.; Yamaguchi, H. Chem. Soc. Rev. 2009, 38, 875.

    7. [7]

      Ashton, P. R.; Goodnow, T. T.; Kaifer, A. E. Angew. Chem. Int. Ed. 1989, 28, 1396. doi: 10.1002/anie.198913961

    8. [8]

      (a) Silvi, S.; Venturi, M.; Credi, A. J. Mater. Chem. 2009, 19, 2279.
      (b) Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530.
      (c) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131.

    9. [9]

      Tan, L. L.; Li, H.; Qiu, Y. C. Chem. Sci. 2015, 6, 1640. doi: 10.1039/C4SC03749A

    10. [10]

      (a) Mandal, A. K.; Gangopadhyay, M.; Das, A. Chem. Soc. Rev. 2015, 44, 663.
      (b) Qu, D. H.; Wang, Q. C.; Zhang, Q. W.; Ma, X.; Tian, H. Chem. Rev. 2015, 115, 7543.

    11. [11]

      Wang, Y.; Tian, Y.; Chen, Y. Z. Chem. Commun. 2018, 54, 7991. doi: 10.1039/C8CC04542A

    12. [12]

      Ma, L.; Wang, S.; Li, C. Chem. Commun. 2018, 54, 2405. doi: 10.1039/C8CC00213D

    13. [13]

      Wu, D.; Li, Y.; Shen, J. Chem. Commun. 2018, 54, 8198. doi: 10.1039/C8CC04334E

    14. [14]

      (a) Liu, Y.; Chipot, C.; Shao, X.; Cai, W. J. Phys. Chem. C 2014, 118, 19380.
      (b) Li, H.; Li, X.; Ågren, H.; Qu, D. H. Org. Lett. 2014, 16, 4940.
      (c) Cao, J.; Ma, X.; Min, M.; Cao, T.; Wu, S.; Tian, H. Chem. Commun. 2014, 50, 3224.
      (d) Li, H.; Zhang, J. N.; Zhou, W.; Zhang, H.; Zhang, Q.; Qu, D. H.; Tian, H. Org. Lett. 2013, 15, 3070.
      (e) Yamauchi, K.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Org. Lett. 2010, 12, 1284.
      (f) Miyawaki, A.; Kuad, P.; Takashima, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc. 2008, 130, 17062.
      (g) Liu, Y.; Yang, Z. X.; Chen, Y. J. Org. Chem. 2008, 73, 5298.
      (h) Franchi, P.; Fanì, M.; Mezzina, E.; Lucarini, M. Org. Lett. 2008, 10, 190.
      (i) Hiratani, K.; Kaneyama, M.; Nagawa, Y.; Koyama, E.; Kanesato, M. J. Am. Chem. Soc. 2004, 126, 13568.

    15. [15]

      (a) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 50223.
      (b) Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. Angew. Chem. Int. Ed. 2009, 48, 9721.
      (c) Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.
      (d) Cragg, P. J.; Sharma, K. Chem. Soc. Rev. 2012, 41, 597.
      (e) Ogoshi, T.; Yamagishi, T. Chem. Commun. 2014, 50, 4776.
      (f) Strutt, N. L.; Zhang, H.; Schneebeli, S. T.; Stoddart, J. F. Acc. Chem. Res. 2014, 47, 2631.
      (g) Yue, S.; Zhou, Y.; Yao, Y.; Xue, M. Acta Chim. Scinica 2014, 72, 1053(in Chinese).
      (岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)

    16. [16]

      (a) Li, C.; Chen, S.; Li, J.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. Chem. Commun. 2011, 47, 11294.
      (b) Hu, X. B.; Chen, Z.; Chen, L.; Zhang, L.; Hou, J. L.; Li, Z. T. Chem. Commun. 2012, 48, 10999.
      (c) Hu, X. Y.; Wu, X.; Duan, Q.; Xiao, T.; Lin, C.; Wang, L. Org. Lett. 2012, 14, 4826.
      (d) Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Org. Lett. 2013, 15, 6148.
      (e) Li, H.; Chen, D. X.; Sun, Y. L.; Zheng, Y. B.; Tan, L. L.; Weiss, P. S.; Yang, Y. W. J. Am. Chem. Soc. 2013, 135, 1570.
      (f) Yang, Y. W.; Cao, D. Chin. J. Chem. 2015, 33, 303.
      (g) Han, C.; Zhang, Z.; Chi, X.; Zhang, M.; Yu, G.; Huang, F. Acta Chim. Sinica 2012, 70, 1775(in Chinese).
      (韩成友, 张子彬, 池小东, 张明明, 喻国灿, 黄飞鹤, 化学学报, 2012, 70, 1775.)

    17. [17]

      (a) Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F. Angew. Chem. Int. Ed. 2011, 123, 1433.
      (b) Hu, X. B.; Chen, Z.; Tang, G.; Hou, J. L.; Li, Z. T. J. Am. Chem. Soc. 2012, 134, 8384.
      (c) Chen, L.; Si, W.; Zhang, L.; Tang, G.; Li, Z. T.; Hou, J. L. J. Am. Chem. Soc. 2013, 135, 2152.
      (d) Cao, Y.; Hu, X. Y.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y. Z.; Wang, L. J. Am. Chem. Soc. 2014, 136, 10762.
      (e) Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Chem. Sci. 2015, 6, 197.
      (f) Chen, R.; Jiang, H.; Gu, H.; Zhou, Q.; Wu, J.; Chen, D.; Zhang, J. Chem. Commun. 2015, 51, 12220.
      (g) Wu, X.; Duan, Q.; Ni, M.; Hu, X.; Wang, L. Chin. J. Org. Chem. 2014, 34, 437(in Chinese).
      (吴旋, 段群鹏, 倪梦飞, 胡晓玉, 王乐勇, 有机化学, 2014, 34, 437.)

    18. [18]

      (a) Zhang, Z.; Xia, B.; Han, C.; Yu, Y.; Huang, F. Org. Lett. 2010, 12, 3285.
      (b) Li, C.; Zhao, L.; Li, J.; Ding, X.; Chen, S.; Zhang, Q.; Yu, Y.; Jia, X. Chem. Commun. 2010, 46, 9016.
      (c) Zhang, H.; Liu, Z.; Liu, F.; Hao, A. Chin. J. Org. Chem. 2012, 32, 219.
      (d) Zhang, H.; Zhao, Y. Chem. Eur. J. 2013, 19, 16862.
      (e) Wang, Y.; Xu, J. F.; Chen, Y. Z.; Niu, L. Y.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Chem. Commun. 2014, 50, 7001.
      (f) Wang, Y.; Ping, G.; Li, C. Chem. Commun. 2016, 52, 9858.
      (g) Jiang, S.; Han Y.; Sun, J.; Yan, C. G. Tetrahedron 2017, 73, 5107.
      (h) Sun, Y.; Fu, W.; Chen, C.; Wang, J.; Yao, Y. Chem. Commun. 2017, 53, 3725.

    19. [19]

      Ogoshi, T.; Demachi, K.; Kitajima, K.; Yamagishi, T. A. Chem. Commun. 2011, 47, 7164. doi: 10.1039/c1cc12333e

    20. [20]

      Chen, Y.; Cao, D.; Wang, L.; He, M.; Zhou, L.; Schollmeyer, D.; Meier, H. Chem. Eur. J. 2013, 19, 7064. doi: 10.1002/chem.201204628

    21. [21]

      Xia, B. Y.; Xue, M. Chem. Commun. 2014, 50, 1021. doi: 10.1039/C3CC48014C

    22. [22]

      Cheng, M.; Wang, Q.; Cao, Y. Tetrahedron Lett. 2016, 57, 4133. doi: 10.1016/j.tetlet.2016.07.038

    23. [23]

      Sun, C. L.; Xu, J. F.; Chen, Y. Z. Chin. Chem. Lett. 2015, 26, 843. doi: 10.1016/j.cclet.2015.05.030

    24. [24]

      Li, S. H.; Zhang, H. Y.; Xu, X.; Liu, Y. Nat. Commun. 2015, 6, 7590. doi: 10.1038/ncomms8590

    25. [25]

      (a) Han, Y.; Huo, G. F.; Sun, J.; Xie, Y. J.; Yan, C. G.; Zhao, Y.; Wu, X.; Lin, C.; Wang, L.; Sci. Rep. 2016, 6, 28748.
      (b) Han, Y.; Huo, G. F.; Sun, J.; Yan, C. G.; Lu, Y.; Lin, C.; Wang, L. Supramol. Chem. 2017, 29, 547.

    26. [26]

      Cheng, M.; Wang, Q.; Cao, Y.; Pan, Y.; Yang, Z.; Jiang, J.; Wang, L. Tetrahedron Lett. 2016, 57, 4133. doi: 10.1016/j.tetlet.2016.07.038

    27. [27]

      Zhao, L-L.; Han, Y.; Yan, C.-G. Chin. Chem. Lett. 2019, doi: 10.1016/j.cclet.2019.04.024.

    28. [28]

      Cerrada. L.; Pinol, M.; Serrano, L. J. J. Polym. Sci., Part A:Polym. Chem. 1996, 34, 2603. doi: 10.1002/(SICI)1099-0518(19960930)34:13<2603::AID-POLA6>3.0.CO;2-S

    29. [29]

      (a) Huo, G. F.; Han, Y.; Sun, J. J. Incl. Phenom. Macrocycl. Chem. 2016, 86, 231.
      (b) Jiang, S.; Han, Y.; Sun, J. Tetrahedron 2017, 73, 5107.
      (c) Yin, C. B.; Han, Y.; Huo, G. F. Chin. Chem. Lett. 2017, 28, 431.
      (d) Jiang, S.; Han, Y.; Cheng, M. New J. Chem. 2018, 42, 7603.
      (e) Han, Y.; Xu, L. M.; Nie, C. Y. Beilstein J. Org. Chem. 2018, 14, 1660.

  • 图 1  双[1]轮烷3a的核磁氢谱部分图(400 MHz, 298 K, CDCl3)

    Figure 1  Partial 1H NMR spectrum (400 MHz, 298 K, CDCl3) of bis-[1]rotaxane 3a

    图 2  双[1]轮烷3a1H-1H NOESY图谱(600 MHz, 298K, CDCl3)

    Figure 2  1H-1H NOESY spectrum (600 MHz, 298 K, CDCl3) of bis-[1]rotaxane 3a

    图式 1  双-[1]轮烷3a~3h合成路线

    Scheme 1  Synthesis of bis-[1]rotaxane 3a~3h

    图 3  双[1]轮烷3a与不同金属离子的紫外吸收图

    Figure 3  Ultraviolet absorption diagram of bis-[1]rotaxane 3a and different metal ions

    图 4  双[1]轮烷3a与不同浓度的Cu2+离子的络合比曲线

    Figure 4  Complex ratio curve of bis-[1]rotaxane 3a with differ- rent concentrations of Cu2+

    表 1  8个双[1]轮烷产率及核磁对比

    Table 1.  Yields of bis[1]rotaxanes and their difference on 1H NMR

    Compd. n m Yield/% Number of H (δ<0)
    3a 4 1 66.5 16 (CH2)
    3b 4 2 54.6 16 (CH2)
    3c 2 1 83.4 8 (CH2)
    3d 2 2 65.3 8 (CH2)
    3e 2 4 64.3 8 (CH2)
    3f 1 1 81.1 8 (CH2)
    3g 1 2 65.2 8 (CH2)
    3h 1 4 52.6 8 (CH2)
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  616
  • HTML全文浏览量:  63
文章相关
  • 发布日期:  2019-12-25
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-07-30
  • 网络出版日期:  2019-12-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章