叔膦介导的叠氮化合物与不饱和酮的连续Staudinger/Aza-Michael加成反应合成β-氨基取代酮类化合物

丛甜甜 王华敏 刘媛媛 吴海虹 张俊良

引用本文: 丛甜甜, 王华敏, 刘媛媛, 吴海虹, 张俊良. 叔膦介导的叠氮化合物与不饱和酮的连续Staudinger/Aza-Michael加成反应合成β-氨基取代酮类化合物[J]. 有机化学, 2019, 39(8): 2157-2165. doi: 10.6023/cjoc201906005 shu
Citation:  Cong Tiantian, Wang Huamin, Liu Yuanyuan, Wu Haihong, Zhang Junliang. Phosphine-Mediated Sequential Staudinger/Aza-Michael Addition of Azides with Unsaturated Ketones to Synthesize β-Amino Substituted Ketones[J]. Chinese Journal of Organic Chemistry, 2019, 39(8): 2157-2165. doi: 10.6023/cjoc201906005 shu

叔膦介导的叠氮化合物与不饱和酮的连续Staudinger/Aza-Michael加成反应合成β-氨基取代酮类化合物

    通讯作者: 刘媛媛, yyliu@chem.ecnu.edu.cn; 吴海虹, hhwu@chem.ecnu.edu.cn; 张俊良, junliangzhang@fudan.edu.cn
  • 基金项目:

    国家自然科学基金(No.21871088)、上海市教育发展基金会和上海市教育委员会“晨光计划”(No.16CG22)、中央高校基本科研业务费专项资金(No.21871088)资助项目

摘要: 以叔膦为介导,水为添加剂,在1,2-二氯乙烷溶剂中,叠氮化合物与三氟甲基取代αβ-不饱和酮为原料,发生连续Staudinger/Aza-Michael加成反应.所开发反应可以中等到优秀的收率(最高96%)获得氢胺化产物,并且能够实现克级规模制备目标产物.此方法有广泛的底物范围(30个底物).核磁共振磷谱监测实验验证了反应的启动步骤是叠氮与叔膦的Staudinger反应.

English

  • 叠氮化合物是有机合成中重要的合成子, 是构建含氮化合物的关键中间体[1].叠氮化合物可以参与多种化学反应[1], 例如Huisgen环加成[2]、Curtius重排[3]、Schmidt重排[4]、Staudinger反应[5].其中, Staudinger反应普适性广, 反应迅速, 可合成多种含氮化合物, 因而受到化学家们的广泛关注.叠氮化合物与叔膦作用, 释放一分子氮气, 生成氮杂叶立德的反应被称为Staudinger反应(Scheme 1a)[5]. Staudinger反应中产生的氮杂叶立德是一种多功能中间体, 例如, 其可以被还原为伯胺, 还可作为亲核试剂进攻羰基化合物(酰卤、羧基等), 进而转化为酰胺、亚胺[5f~5g].

    图式 1

    图式 1.  Staudinger反应
    Scheme 1.  Staudinger reaction

    2018年, 我们小组[6]报道了通过叔膦催化, 以三氟甲基取代的α, β-不饱和酮和TMSN3为原料合成β-氨基-α-重氮羰基化合物的反应研究(Scheme 1b).在此反应中, 叠氮与叔膦作用产生叠氮膦, 经由三唑五元环中间体, 得到最终产物β-氨基-α-重氮羰基化合物.在此过程中作者猜测, 由于TMS基团的位阻原因, 导致产生膦亚胺的过程发生缓慢.基于以上的工作, 我们猜想可以采用一种小位阻的叠氮乙酸甲酯与三氟甲基取代的α, β-不饱和酮发生反应, 经由Scheme 1c过程得到环状化合物.

    首先, 叠氮化合物与叔膦作用产生膦亚胺中间体, 膦亚胺中间体与酮发生氮杂Wittig反应生成亚胺.与此同时, 叔膦与丙烯酸甲酯作用得到两性离子中间体.两性离子中间体作为布朗斯特碱催化亚胺发生分子内Michael加成反应得到五元环状化合物.但令人遗憾的是, 反应没有按照我们的预想发生, 丙烯酸甲酯没有参与到反应中, 而是膦亚胺优先发生水解, 经由甘氨酸甲酯, 通过氮杂Michael加成得到了氢胺化产物.我们认为该氢胺化反应以叠氮化合物为胺源, 避免了分步的将叠氮化合物还原后分离, 再应用于Michael加成, 在适当的合成应用中可能会具有较好的反应步骤经济性, 如无商业可得的胺源而需要由卤代烃来制备胺时, 可以制备叠氮化合物, 然后以叔膦为还原剂直接进行氢胺化反应.基于这些考虑, 我们对该反应进行了研究.

    我们以三氟甲基取代的α, β-不饱和酮1h与叠氮乙酸甲酯2为模板底物进行了条件筛选(表 1).首先, 以甲苯为溶剂, 丙烯酸甲酯为添加剂对反应进行了尝试, 当使用二苯基甲基膦作为膦试剂时, 可以46%的产率获得氢胺化产物(Entry 1), 而未观察到环状产物.鉴于得到氢胺化产物的过程无需加入丙烯酸甲酯, 下面的条件筛选过程中未添加丙烯酸甲酯.以甲苯为溶剂考察了一系列叔膦对反应的影响(Entries 2~10).使用芳基烷基膦时, 均能以中等的核磁产率得到目标产物(Entries 2~4).改变叔膦为(nBu)3P或(tBu)3P, 反应不能顺利发生(Entries 5, 6).而采用三苯基膦作膦试剂时, 可以顺利得到目标产物, 较之二苯基甲基膦为膦试剂时, 产率略低(Entry 7).接着考察了几种双膦试剂对反应的影响, 当使用双膦之间存在一个亚甲基的双(二苯基膦)甲烷(DPPM)时, 只得到痕量产物(Entry 8), 而采用其它两种双膦试剂1, 3-双(二苯基膦基)丙烷(DPPP)及1, 4-双(二苯基膦)丁烷(DPPB)时, 可以中等的产率得到氮杂Michael加成产物(Entries 9, 10).随后, 选择二苯基甲基膦为膦试剂, 通过筛选不同类型的溶剂对反应做进一步优化, 发现以1, 2-二氯乙烷(DCE)为最优的反应溶剂(Entries 11~22).考虑到在Staudinger反应中水可以促进氮杂叶立德的还原, 我们在反应中加入水作为混合溶剂, 很遗憾, 未得到更好的结果(Entry 23).但令人高兴的是, 将加入水的量降至等物质的量时, 反应的产率有明显提高(Entry 24), 与此同时, 将叔膦的量增至1.2 equiv.时, 最终产物可以核磁收率90%, 分离收率78%得到(Entry 25).因此确定最优条件为: 1.2 equiv.二苯基甲基膦介导, 1.0 equiv.水为添加剂, DCE为溶剂, 室温搅拌.

    表 1

    表 1  反应条件的优化a
    Table 1.  Optimization of the reaction conditions
    下载: 导出CSV
    Entry Phosphine Solvent Yieldb/%
    1c Ph2PMe Toluene 46
    2 Ph2PMe Toluene 69
    3 Ph2PEt Toluene 44
    4 PhPMe2 Toluene 64
    5 (nBu)3P Toluene Trace
    6 (tBu)3P Toluene n. r.
    7 Ph3P Toluene 65
    8 DPPM Toluene Trace
    9 DPPP Toluene 68
    10 DPPB Toluene 65
    11 Ph2PMe DCM 50
    12 Ph2PMe DCE 75 (50)f
    13 Ph2PMe THF 62
    14 Ph2PMe MeOH 20
    15 Ph2PMe CH3CN 43
    16 Ph2PMe Acetone 41
    17 Ph2PMe Dioxane 41
    18 Ph2PMe CHCl3 54
    19 Ph2PMe PhCl 49
    20 Ph2PMe o-Xylene 53
    21 Ph2PMe p-Xylene 44
    22 Ph2PMe m-Xylene 58
    23 Ph2PMe H2O/DCE 53
    24d Ph2PMe DCE 86
    25e Ph2PMe DCE 90 (78f)
    a Reaction conditions: 1h (0.1 mmol), 2 (0.12 mmol), and phosphine (0.1 mmol) in the solvent specified (1 mL) at room temperature for 12 h. b 19F NMR yield with PhCF3 as an internal standard. c Methyl acrylate (0.1 mmol) was added. d H2O (0.1 mmol) was added. e H2O (0.1 mmol) was added, Ph2PMe (1.2 equiv.) was used. f Isolated yield. DPPM=Bis(diphenylphosphino)methane. DPPP=Bis(1, 3-diphenylphosphino)propane. DPPB=1, 4-bis(diphenylphosphanyl) butane

    在上述最优的条件下, 我们对三氟甲基取代的α, β-不饱和酮与叠氮乙酸甲酯的Staudinger/aza-Michael加成反应进行了底物的普适性考察(表 2).首先, 对α, β-不饱和酮苯环上的取代基进行考察.当苯环的对位引入给电子基(甲基、甲氧基、异丁基、苯基、甲巯基)时, 能以良好到优秀的产率得到目标产物(Entries 2~6).而苯基的对位引入吸电子基(氟、氯、溴、三氟甲氧基、三氟甲基、硝基、氰基、甲氧羰基、甲氧磺酰基)时, 反应效果略差(Entries 7~15).苯环上的取代基的位置对反应的收率没有明显的影响(Entries 16~20).而当苯环上有双吸电子基取代时, 反应也可发生, 但产率较低(Entries 21, 22).萘环和杂芳环(噻吩基、呋喃基、吡啶基)取代的α, β-不饱和酮也可以良好到优秀的产率得到3w~3z (Entries 23~26).令人高兴的是, 烷基(环己基)取代的α, β-不饱和酮也能顺利地发生反应, 以90%的产率得到Michael加成产物(Entry 27).在此反应条件下, 五氟乙基和七氟丙基取代的α, β-不饱和酮同样可以顺利地参与连续Staudinger/Michael加成反应(Entries 28, 29).除此之外, 苄基叠氮也可应用于此反应, 并表现出较好的反应活性(Entry 30).

    表 2

    表 2  底物范围a
    Table 2.  Substrate scope
    下载: 导出CSV
    Entry 1 R Rf 3 Yieldb/%
    1 1a Ph CF3 3a 85
    2 1b 4-MeC6H4 CF3 3b 96
    3 1c 4-iso-Butylphenyl CF3 3c 86
    4 1d 4-MeOC6H4 CF3 3d 85
    5 1e 4-PhC6H4 CF3 3e 81
    6 1f 4-MeSC6H4 CF3 3f 86
    7 1g 4-FC6H4 CF3 3g 75
    8 1h 4-ClC6H4 CF3 3h 78
    9 1i 4-BrC6H4 CF3 3i 71
    10 1j 4-CF3OC6H4 CF3 3j 73
    11 1k 4-CF3C6H4 CF3 3k 70
    12 1l 4-O2NC6H4 CF3 3l 66
    13 1m 4-NCC6H4 CF3 3m 78
    14 1n 4-MeO2CC6H4 CF3 3n 80
    15 1o 4-MeO2SC6H4 CF3 3o 52
    16 1p 2-NO2C6H4 CF3 3p 72
    17 1q 3-NO2C6H4 CF3 3q 65
    18 1r 2-BrC6H4 CF3 3r 73
    19 1s 3-BrC6H4 CF3 3s 80
    20 1t 2-MeOC6H4 CF3 3t 75
    21 1u 3, 4-Cl2C6H3 CF3 3u 68
    22 1v 3, 5-(CF3)2C6H3 CF3 3v 50
    23 1w 2-Naphthyl CF3 3w 95
    24 1x 2-Furyl CF3 3x 65
    25 1y 2-Thienyl CF3 3y 92
    26 1z 2-Pyridyl CF3 3z 80
    27 1aa Cyclohexyl CF3 3aa 90
    28 1ba Ph C2F5 3ba 65
    29 1ca Ph C3F7 3ca 62
    30c 1h 4-ClC6H4 CF3 3da 72
    a Reactions were performed with 1 (0.3 mmol), 2 (0.36 mmol), and Ph2PMe (0.36 mmol) in DCE (3.0 mL) at room temperature for 12 h. b Yield of isolated product. DCE=1, 2-Dichloroethane. c BnN3 was used instead of 2.

    为了验证此合成方法的实用性和可靠性, 我们进行了克级规模制备实验(Scheme 2).我们以1a与叠氮乙酸甲酯为底物, 以80%的产率获得1.15 g目标产物, 与小量规模的反应收率相当.

    图式 2

    图式 2.  克级规模制备
    Scheme 2.  Gram-scale reaction

    为了初步探究反应过程, 我们进行了一系列控制实验研究(Scheme 3).在DCE作溶剂, 碳酸钾作碱的条件下, 甘氨酸甲酯盐酸盐与α, β-不饱和酮发生反应, 以87%的核磁收率得到目标产物.由此控制实验结果可推测, 反应可能经历了叠氮化合物转化为氨基化合物的过程(Scheme 3A).

    图式 3

    图式 3.  控制实验
    Scheme 3.  Control experiments

    随后我们尝试了不同的氮杂叶立德与α, β-不饱和酮1h的反应, 当使用二苯基甲基膦与三苯基膦衍生的氮杂叶立德时, 反应可以顺利发生, 以优秀的产率得到目标产物(Schemes 3B, 3C).而三丁基膦衍生的氮杂叶立德参与反应时, 仅以5%的产率得到目标产物(Scheme 3D).这一实验结果与我们条件筛选所得结果一致.

    为了进一步了解此反应的过程, 我们进行了31P NMR监测实验.首先, 对二苯基甲基膦进行核磁共振磷谱测定(图 1a).然后, 将α, β-不饱和酮1h与二苯基甲基膦混合, 进行核磁共振磷谱监测(图 1b).最后, 将叠氮乙酸甲酯与二苯基甲基膦混合, 进行核磁共振磷谱监测(图 1c).通过对比, 我们发现叔膦与α, β-不饱和酮混合没有新的磷谱信号峰出现.而叠氮与叔膦混合时有新的信号峰出现.基于以上实验结果我们得出, 此反应的启动步骤是叠氮乙酸甲酯与叔膦的Staudinger反应.

    图 1

    图 1.  (a) 二苯基甲基磷的核磁共振磷谱; (b) α, β-不饱和酮1h与二苯基甲基膦的核磁共振磷谱; (c)叠氮乙酸甲酯与二苯基甲基膦的核磁共振磷谱
    Figure 1.  31P NMR spectra of Ph2PMe (a), Ph2PMe containing trifluoromethyl substituted α, β-unsaturated ketone (b), and Ph2PMe containing methyl 2-azidoacetate (c)

    基于31P NMR监测实验, 控制实验与以往的工作[5, 6], 我们提出了两种可能的反应机理(Scheme 4).一种机理为叠氮化合物与叔膦发生Staudinger反应生成氮杂叶立德, 随后氮杂叶立德被还原为氨基, 最后发生氮杂Michael加成反应得到氢胺化产物(path A).另一种可能的机理为氮杂叶立德先对不饱和酮中的烯烃进行加成, 然后发生水解, 得到最终产物(path B).

    图式 4

    图式 4.  可能的反应机理
    Scheme 4.  Proposed reaction mechanisms

    报道了一种以叠氮为胺源的氢胺化反应, 实现了以三氟甲基取代的α, β-不饱和酮与叠氮化合物为反应物, 叔膦为媒介(还原剂)的连续Staudinger/Aza-Mi- chael加成反应, 以中等到优秀的产率得到氢胺化产物.同时, 此反应可实现克级规模制备, 仍能以良好的收率得到氢胺化产物.核磁共振磷谱实验说明了叠氮与叔膦的Staudinger反应是此氢胺化反应的启动步骤.

    所有实验均在空气氛围中进行; 制备反应所需的原料与溶剂均为商品化的化学纯和分析纯试剂; 实验过程中利用薄层色谱对反应进行检测, 采用柱层析分离化合物; 所使用的柱层析硅胶来源于青岛海洋化工.实验过程中所有化合物的核磁共振谱图数据(1H NMR, 13C NMR, 19F NMR和31P NMR)表征来自于Bruker AM-400或者Bruker AM-500型核磁共振波谱仪; 高分辨质谱数据来自于Waters GCT Premier.

    空气氛围下, 在20 mL Schlenk反应管中将α, β-不饱和酮1 (0.3 mmol)、叠氮化合物2 (0.3 mmol)、水(0.3 mmol)溶于1, 2-二氯乙烷中, 搅拌下向反应混合物中加入二苯基甲基膦.反应12 h后减压除去溶剂, 经柱层析纯化得到目标化合物.

    N-[2-(1, 1, 1-三氟-4-氧代-4-苯基丁基)]-甘氨酸甲酯(3a):白色液体, 产率85%. 1H NMR (500 MHz, CDCl3) δ: 7.95 (d, J=7.7 Hz, 2H), 7.60 (s, 1H), 7.48 (t, J=7.6 Hz, 2H), 3.90~3.86 (m, 1H), 3.67 (s, 3H), 3.63 (d, J=9.2 Hz, 2H), 3.30~3.28 (m, 2H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (125 MHz, CDCl3) δ: 195.7, 172.0, 136.2, 133.7, 128.8, 128.3, 128.1, 126.6 (q, J=282.4 Hz), 55.7 (q, J=28.8 Hz), 51.9, 49.8, 38.6; HRMS (ESI) calcd for C13H14F3NNaO3 (M+Na+): 312.0818, found 312.0826.

    N-(2-(1, 1, 1-三氟-4-(4-甲基苯基)-4-氧代丁基))甘氨酸甲酯(3b):黄色固体, 产率96%. m.p. 37~38 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.85 (d, J=8.2 Hz, 2H), 7.41~7.06 (m, 2H), 3.98~3.77 (m, 1H), 3.67 (s, 3H), 3.63 (d, J=5.2 Hz, 2H), 3.27 (dd, J=6.0, 3.1 Hz, 2H), 2.42 (s, 3H), 1.93 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 195.3, 172.1, 144.7, 133.8, 129.5, 128.3, 126.6 (q, J=282.3 Hz), 55.7 (q, J=28.7 Hz), 52.0, 51.9, 49.8, 38.4, 21.7, 21.7; HRMS (ESI) calcd for C14H16F3NNaO3 (M+Na+): 326.0974, found 326.0976.

    N-(2-(1, 1, 1-三氟-4-(4-异丁基苯基)-4-氧代丁基))甘氨酸甲酯(3c):白色液体, 产率86%. 1H NMR (400 MHz, CDCl3) δ: 7.88 (d, J=8.1 Hz, 2H), 7.26 (t, J=7.4 Hz, 2H), 3.88 (s, 1H), 3.67 (s, 3H), 3.64 (d, J=4.8 Hz, 2H), 3.29~3.27 (m, 2H), 2.54 (d, J=7.2 Hz, 2H), 2.01~1.80 (m, 2H), 0.91 (d, J=6.6 Hz, 6H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 195.3, 172.1, 148.4, 134.0, 129.5, 128.2, 126.6 (q, J=282.2 Hz), 55.7 (q, J=28.7 Hz), 51.9, 49.9, 45.4, 38.4, 30.1, 22.3; HRMS (ESI) calcd for C17H22F3NNaO3 (M+Na+): 368.1444, found 368.1448.

    N-(2-(1, 1, 1-三氟-4-(4-甲氧基苯基)-4-氧代丁基))甘氨酸甲酯(3d):黄色固体, 产率85%. m.p. 81~82 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95~7.92 (m, 2H), 6.97~6.93 (m, 2H), 3.87 (d, J=7.1 Hz, 4H), 3.68 (s, 3H), 3.62 (d, J=5.9 Hz, 2H), 3.24 (dd, J=6.0, 4.5 Hz, 2H), 1.94 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 194.1, 172.1 164.0, 130.5, 129.3, 127.9, 126.6 (q, J=282.3 Hz). 113.9, 56.2, 55.9, 55.7, 55.5, 55.5, 55.4, 51.9, 51.9, 49.9, 38.1; HRMS (ESI) calcd for C14H16F3NNaO4 (M+Na+): 342.0924, found 342.0927.

    N-(2-(1, 1, 1-三氟-4-(4-[1, 1'-联苯基])-4-氧代丁基))甘氨酸甲酯(3e):黄色固体, 产率81%. m.p. 110~111 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.01 (d, J=8.2 Hz, 2H), 7.69 (d, J=8.2 Hz, 2H), 7.62 (d, J=7.4 Hz, 2H), 7.48~7.38 (m, 3H), 3.90 (s, 1H), 3.68 (s, 3H), 3.65 (d, J=4.8 Hz, 2H), 3.33~3.31 (m, 2H), 1.97 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (100 MHz, CDCl3) δ: 195.3, 172.1, 146.4, 139.6, 134.9, 129.1, 128.8, 128.5, 127.4, 127.3, 126.6 (q, J=282.3 Hz), 55.7 (q, J=28.8 Hz), 52.0, 49.9, 38.6; HRMS (ESI) calcd for C19H18F3NNaO3 (M+Na+): 388.1131, found 388.1135.

    N-(2-(1, 1, 1-三氟-4-(4-甲硫基苯基)-4-氧代丁基))甘氨酸甲酯(3f):白色液体, 产率86%. 1H NMR (500 MHz, CDCl3) δ: 7.85 (d, J=8.5 Hz, 2H), 7.28~7.26 (m, 2H), 3.88~3.85 (m, 1H), 3.68 (s, 3H), 3.62 (q, J=17.6 Hz, 2H), 3.29~3.19 (m, 2H), 2.52 (s, 3H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (125 MHz, CDCl3) δ: 194.6, 172.0, 146.9, 132.4, 128.5, 126.6 (q, J=282.4 Hz), 125.0, 55.7 (q, J=28.8 Hz), 52.0, 49.8, 38.3, 14.7. HRMS (ESI) calcd for C14H16F3NNaO3S (M+Na+): 358.0695, found 358.0701.

    N-(2-(1, 1, 1-三氟-4-(4-氟苯基)-4-氧代丁基))甘氨酸甲酯(3g):黄色液体, 产率75%. 1H NMR (400 MHz, CDCl3) δ: 7.99 (dd, J=8.4, 5.5 Hz, 2H), 7.16 (t, J=8.5 Hz, 2H), 3.87 (s, 1H), 3.69 (s, 3H), 3.63 (d, J=6.9 Hz, 2H), 3.27 (d, J=5.2 Hz, 2H), 1.93 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3, -104.0; 13C NMR (100 MHz, CDCl3) δ: 194.1, 172.1, 166.1 (d, J=255.9 Hz), 132.7 (d, J=3.0 Hz), 130.9 (d, J=9.5 Hz), 126.5 (q, J=282.5 Hz), 116.0 (d, J=22.0 Hz), 55.7 (q, J=28.7 Hz), 52.0, 52.0, 49.0, 38.5; HRMS (ESI) calcd for C13H13F4NNaO3 (M+Na+): 330.0724, found 330.0728.

    N-(2-(1, 1, 1-三氟-4-(4-氯苯基)-4-氧代丁基))甘氨酸甲酯(3h):黄色液体, 产率78%. 1H NMR (400 MHz, CDCl3) δ: 7.90 (d, J=8.2 Hz, 2H), 7.46 (d, J=8.1 Hz, 2H), 3.87 (s, 1H), 3.69 (s, 3H), 3.62 (t, J=12.9 Hz, 2H), 3.27 (d, J=5.9 Hz, 2H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 194.5, 172.1, 140.3, 134.5, 129.6, 129.1, 126.5 (q, J=282.6 Hz), 55.6 (q, J=28.8 Hz), 52.0, 49.8, 38.6; HRMS (ESI) calcd for C13H13F3ClNNaO3 (M+Na+): 346.0428, found 346.0433.

    N-(2-(1, 1, 1-三氟-4-(4-溴苯基)-4-氧代丁基))甘氨酸甲酯(3i):黄色液体, 产率71%. 1H NMR (400 MHz, CDCl3) δ: 7.82 (d, J=8.5 Hz, 2H), 7.63 (d, J=8.4 Hz, 2H), 3.86 (dd, J=7.6, 4.7 Hz, 1H), 3.69 (s, 3H), 3.61 (t, J=13.1 Hz, 2H), 3.26 (d, J=5.7 Hz, 2H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 194.8, 172.1, 134.9, 132.1, 129.7, 129.0, 126.5 (q, J=282.5 Hz), 56.1, 55.8, 55.6 (q, J=28.8 Hz), 55.5, 55.2, 52.0, 49.8, 38.6. HRMS (ESI) calcd for C13H13BrF3-NNaO3 (M+Na+): 389.9923, found 389.9927.

    N-(2-(1, 1, 1-三氟-4-(4-三氟甲氧基苯基)-4-氧代丁基))甘氨酸甲酯(3j):黄色液体, 产率73%. 1H NMR (500 MHz, CDCl3) δ: 8.05 (d, J=8.1 Hz, 2H), 7.75 (d, J=8.2 Hz, 2H), 3.88 (dd, J=13.5, 6.3 Hz, 1H), 3.68 (s, 3H), 3.61 (t, J=15.7 Hz, 2H), 3.31 (d, J=6.0 Hz, 2H), 1.89 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -63.2, -75.3; 13C NMR (125 MHz, CDCl3) δ: 194.9, 194.9, 172.1, 138.9, 134.9 (q, J=32.8 Hz), 128.5, 126.4 (q, J=282.6 Hz), 125.9 (q, J=3.7 Hz), 123.5 (q, J=272.8 Hz), 55.6 (q, J=28.9 Hz), 52.0, 49.7, 39.1, 39.0. HRMS (ESI) calcd for C14H13F6NNaO3 (M+Na+): 380.0692, found 380.0691.

    N-(2-(1, 1, 1-三氟-4-(4-三氟甲基苯基)-4-氧代丁基))甘氨酸甲酯(3k):黄色固体, 产率70%. m.p. 45~46 ℃; 1H NMR (500 MHz, CDCl3) δ: 8.05 (d, J=8.1 Hz, 2H), 7.75 (d, J=8.2 Hz, 2H), 3.88 (dd, J=13.5, 6.3 Hz, 1H), 3.68 (s, 3H), 3.61 (t, J=15.7 Hz, 2H), 3.31 (d, J=6.0 Hz, 2H), 1.89 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -63.24, -75.29; 13C NMR (126 MHz, CDCl3) δ: 194.92, 194.87, 172.10, 138.87, 134.94 (q, J=32.8 Hz), 128.50, 126.40 (q, J=282.6 Hz), 125.87 (q, J=3.7 Hz), 123.45 (q, J=272.8 Hz), 55.64 (q, J=28.9 Hz), 51.98, 49.72, 39.05, 39.04. HRMS (ESI) calcd for C14H13F6NNaO3 (M+Na+): 380.0692, found 380.0691.

    N-(2-(1, 1, 1-三氟-4-(4-硝基苯基)-4-氧代丁基))甘氨酸甲酯(3l):黄色液体, 产率66%. 1H NMR (500 MHz, CDCl3) δ: 8.34 (d, J=8.7 Hz, 2H), 8.13 (d, J=8.7 Hz, 2H), 3.90 (dd, J=12.9, 6.9 Hz, 1H), 3.69 (s, 3H), 3.66~3.59 (m, 2H), 3.35 (d, J=5.7 Hz, 2H), 1.91 (s, 1H); 19F NMR (376 MHz, CDCl3) δ:-75.2; 13C NMR (126 MHz, CDCl3) δ: 194.4, 172.1, 150.6, 140.6, 129.2, 126.3 (q, J=282.8 Hz), 124.0, 55.6 (q, J=29.0 Hz), 52.0, 49.7, 39.4. HRMS (ESI) calcd for C13H13F3N2NaO5 (M+Na+): 357.0669, found 357.0670.

    N-(2-(1, 1, 1-三氟-4-(4-氰基苯基)-4-氧代丁基))甘氨酸甲酯(3m):黄色液体, 产率78%. 1H NMR (500 MHz, CDCl3) δ: 8.05 (d, J=8.2 Hz, 2H), 7.80 (d, J=8.2 Hz, 2H), 3.89~3.86 (m, 1H), 3.69 (s, 3H), 3.65~3.58 (m, 2H), 3.30 (d, J=6.0 Hz, 2H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (125 MHz, CDCl3) δ: 194.6, 172.1, 139.1, 132.7, 130.9, 128.6, 126.3 (q, J=282.7 Hz), 117.7, 117.0, 55.6 (q, J=29.0 Hz), 52.0, 49.7, 39.1. HRMS (ESI) calcd for C14H13F3N2NaO3 (M+Na+): 337.0770, found 337.0773.

    N-(2-(1, 1, 1-三氟-4-(4-甲酸甲酯苯基)-4-氧代丁基))甘氨酸甲酯(3n):黄色固体, 产率80%. m.p. 89~90 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.14 (d, J=8.3 Hz, 2H), 8.01 (d, J=8.4 Hz, 2H), 3.96 (s, 3H), 3.89 (dd, J=13.4, 6.7 Hz, 1H), 3.68 (s, 3H), 3.62 (t, J=12.9 Hz, 2H), 3.32 (d, J=6.1 Hz, 2H), 1.93 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 195.3, 172.1, 166.0, 139.4, 134.4, 130.0, 128.1, 126.5 (q, J=282.6 Hz), 55.7 (q, J=28.8 Hz), 52.5, 52.5, 52.0, 49.7, 39.1. HRMS (ESI) calcd for C14H16F3NNaO4 (M+Na+): 342.0924, found 342.0927.

    N-(2-(1, 1, 1-三氟-4-(4-甲基磺酰基苯基)-4-氧代丁基))甘氨酸甲酯(3o):白色液体, 产率52%. 1H NMR (500 MHz, CDCl3) δ: 8.10 (dd, J=32.0, 8.4 Hz, 4H), 3.92~3.87 (m, 1H), 3.70 (s, 3H), 3.66~3.59 (m, 2H), 3.35~3.34 (m, 2H), 3.10 (s, 3H), 1.93 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (125 MHz, CDCl3) δ: 194.7, 172.1, 144.7 140.1, 129.7, 129.0, 128.1, 128.0, 126.4 (q, J=282.7 Hz), 55.6 (q, J=29.0 Hz), 52.0, 49.7, 44.3, 39.3. HRMS (ESI) calcd for C14H16F3NNaO5S (M+Na+): 390.0593, found 390.0599.

    N-(2-(1, 1, 1-三氟-4-(2-硝基苯基)-4-氧代丁基))甘氨酸甲酯(3p):白色液体, 产率72%. 1H NMR (500 MHz, CDCl3) δ: 8.16 (d, J=8.2 Hz, 1H), 7.78 (t, J=7.4 Hz, 1H), 7.66 (dd, J=11.5, 4.1 Hz, 1H), 7.52 (d, J=7.5 Hz, 1H), 3.88-3.84 (m, 1H), 3.75 (s, 3H), 3.66 (q, J=17.4 Hz, 2H), 3.22 (dd, J=17.5, 3.1 Hz, 1H), 3.08 (dd, J=17.5, 9.4 Hz, 1H), 2.03 (s, 1H); 19F NMR (376 MHz, CDCl3) δ:-75.3; 13C NMR (125 MHz, CDCl3) δ: 198.4, 172.0, 145.4, 137.2, 134.6, 131.0, 127.6, 126.2 (q, J=282.9 Hz), 124.5, 55.7 (q, J=29.1 Hz), 52.0, 49.7, 42.7, 42.7. HRMS (ESI) calcd for C13H13F3N2NaO5 (M+Na+): 357.0669, found 357.0675.

    N-(2-(1, 1, 1-三氟-4-(3-硝基苯基)-4-氧代丁基))甘氨酸甲酯(3q):白色液体, 产率65%. 1H NMR (500 MHz, CDCl3) δ: 8.78 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.29 (d, J=7.7 Hz, 1H), 7.73 (t, J=8.0 Hz, 1H), 3.94~3.89 (m, 1H), 3.70 (s, 3H), 3.66~3.60 (m, 2H), 3.41~3.32 (m, 2H), 1.93 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (125 MHz, CDCl3) δ: 193.8, 172.1, 148.5, 137.5, 133.6, 130.1, 127.9, 126.3 (q, J=282.7 Hz), 123.1, 55.6 (q, J=29.0 Hz), 52.0, 49.7, 39.1. HRMS (ESI) calcd for C13H13F3N2NaO5 (M+Na+): 357.0669, found 357.0673.

    N-(2-(1, 1, 1-三氟-4-(2-溴苯基)-4-氧代丁基))甘氨酸甲酯(3r):黄色液体, 产率73%. 1H NMR (400 MHz, CDCl3) δ: 7.62 (d, J=7.9 Hz, 1H), 7.46 (dd, J=7.6, 1.6 Hz, 1H), 7.42~7.38 (m, 1H), 7.35~7.31 (m, 1H), 3.83 (s, 1H), 3.73 (s, 3H), 3.62 (q, J=17.3 Hz, 2H), 3.34~3.19 (m, 2H), 1.96 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (100 MHz, CDCl3) δ: 199.6, 172.0, 140.6, 133.8, 132.2, 129.0, 127.6, 126.3 (q, J=283.0 Hz), 118.7, 100.0, 55.9 (q, J=29.0 Hz), 52.0, 52.0, 49.6, 42.6. HRMS (ESI) calcd for C14H13F3N2NaO3 (M+Na+): 337.0770, found 337.0773. HRMS (ESI) calcd for C13H13BrF3NNaO3 (M+Na+): 389.9923, found 389.9934.

    N-(2-(1, 1, 1-三氟-4-(3-溴苯基)-4-氧代丁基))甘氨酸甲酯(3s):黄色液体, 产率80%. 1H NMR (400 MHz, CDCl3) δ: 8.08 (s, 1H), 7.87 (d, J=7.8 Hz, 1H), 7.73 (d, J=7.9 Hz, 1H), 7.37 (t, J=7.9 Hz, 1H), 3.87 (dd, J=13.3, 6.6 Hz, 1H), 3.69 (s, 3H), 3.61 (t, J=13.2 Hz, 2H), 3.27 (d, J=6.0 Hz, 2H), 1.91 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (100 MHz, CDCl3) δ: 194.4, 172.1, 137.9, 136.6, 131.2, 130.4, 126.7, 126.5 (q, J=282.6 Hz), 123.2, 55.6 (q, J=28.5 Hz), 52.0, 52.0, 49.8, 38.8. HRMS (ESI) calcd for C13H13BrF3NNaO3 (M+Na+): 389.9923, found 389.9934.

    N-(2-(1, 1, 1-三氟-4-(2-甲氧基苯基)-4-氧代丁基))甘氨酸甲酯(3t):白色液体, 产率75%. 1H NMR (500 MHz, CDCl3) δ: 7.75 (dd, J=7.7, 1.7 Hz, 1H), 7.52~7.48 (m, 1H), 7.03~6.98 (m, 2H), 3.93 (s, 3H), 3.85~3.81 (m, 1H), 3.68 (s, 3H), 3.59 (q, J=17.3 Hz, 2H), 3.36 (dd, J=17.4, 3.2 Hz, 1H), 3.25 (dd, J=17.4, 9.3 Hz, 1H), 1.98 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.5; 13C NMR (125 MHz, CDCl3) δ: 197.7, 172.0, 158.8, 134.3, 130.7, 127.1, 126.6 (q, J=282.4 Hz), 120.8, 111.6, 55.9 (q, J=28.7 Hz), 55.5, 51.9, 49.8, 43.4, 43.4. HRMS (ESI) calcd for C14H16F3NNaO4 (M+Na+): 342.0924, found 342.0927.

    N-(2-(1, 1, 1-三氟-4-(3, 4-二氯苯基)-4-氧代丁基))甘氨酸甲酯(3u):黄色液体, 产率68%. 1H NMR (500 MHz, CDCl3) δ: 8.03 (d, J=2.0 Hz, 1H), 7.77 (dd, J=8.4, 2.0 Hz, 1H), 7.57 (d, J=8.4 Hz, 1H), 3.87 (dd, J=13.4, 6.5 Hz, 1H), 3.69 (s, 3H), 3.62 (q, J=17.5 Hz, 2H), 3.25 (d, J=6.0 Hz, 2H), 1.90 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.3; 13C NMR (125 MHz, CDCl3) δ: 193.6, 172.1, 138.4, 135.8, 133.6, 130.9, 130.1, 127.1, 126.4 (q, J=282.7 Hz), 55.6 (q, J=28.9 Hz), 52.0, 49.7, 38.8. HRMS (ESI) calcd for C13H12Cl2F3NNaO3 (M+Na+): 380.0039, found 380.0041.

    N-(2-(1, 1, 1-三氟-4-(3, 5-二三氟甲基苯基)-4-氧代丁基))甘氨酸甲酯(3v):黄色液体, 产率50%. 1H NMR (500 MHz, CDCl3) δ: 8.91~7.99 (m, 3H), 4.57~3.03 (m, 8H), 1.92 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -63.0, -75.2; 13C NMR (125 MHz, CDCl3) δ: 193.2, 172.2, 137.7, 133.4-132.0 (m), 128.2, 126.8, 127.6-119.3 (m), 55.6 (q, J=29.5 Hz), 52.0, 49.7, 39.2. HRMS (ESI) calcd for C15H13F9NNaO3 (M+H+): 426.0746, found 426.0750.

    N-(2-(1, 1, 1-三氟-4-(2-萘基)-4-氧代丁基))甘氨酸甲酯(3w):白色固体, 产率95%. m.p. 90~91 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.45 (s, 1H), 8.02~7.95 (m, 2H), 7.90~7.86 (m, 2H), 7.64~7.55 (m, 2H), 3.96~3.93 (m, 1H), 3.67~3.62 (m, 5H), 3.43 (d, J=5.7 Hz, 2H), 1.98 (d, J=4.5 Hz, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.2; 13C NMR (100 MHz, CDCl3) δ: 195.6, 172.1, 135.8, 133.6, 132.4, 130.1, 129.7, 128.9, 128.7, 127.8, 127.0, 126.6 (q, J=282.3 Hz), 126.5, 124.1, 123.6, 56.3~55.7 (m), 52.0, 52.0, 49.9, 38.6. HRMS (ESI) calcd for C17H16F3NNaO3 (M+Na+): 362.0974, found 362.0976.

    N-(2-(1, 1, 1-三氟-4-(2-呋喃基)-4-氧代丁基))甘氨酸甲酯(3x):白色固体, 产率65%. m.p. 38~39 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J=1.0 Hz, 1H), 7.29~7.26 (m, 1H), 6.58 (dd, J=3.6, 1.7 Hz, 1H), 3.87~3.81 (m, 1H), 3.69 (s, 3H), 3.61 (q, J=17.5 Hz, 2H), 3.16 (d, J=6.3 Hz, 2H), 1.94 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.5; 13C NMR (100 MHz, CDCl3) δ: 184.7, 172.0, 152.3, 146.9, 126.4 (q, J=282.7 Hz), 117.9, 112.6, 55.5 (q, J=29.3 Hz), 52.0, 51.9, 49.6, 38.2. HRMS (ESI) calcd for C11H12F3NNaO4 (M+Na+): 302.0611, found 302.0611.

    N-(2-(1, 1, 1-三氟-4-(2-噻吩基)-4-氧代丁基))甘氨酸甲酯(3y):黄色固体, 产率92%. m.p. 52~53 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.75 (dd, J=3.8, 0.9 Hz, 1H), 7.70 (dd, J=4.9, 0.9 Hz, 1H), 7.16 (dd, J=4.8, 3.9 Hz, 1H), 3.86 (d, J=5.6 Hz, 1H), 3.68 (s, 3H), 3.61 (d, J=8.8 Hz, 2H), 3.23 (dd, J=6.1, 4.6 Hz, 2H), 1.97 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.4; 13C NMR (100 MHz, CDCl3) δ: 188.5, 172.0, 143.5, 134.7, 132.6, 126.4 (q, J=282.6 Hz), 128.4, 77.4, 55.8 (q, J=28.8 Hz), 52.0, 51.9, 49.7, 39.1, 39.1. HRMS (ESI) calcd for C11H12F3NNaO3S (M+Na+): 318.0382, found 318.0383.

    N-(2-(1, 1, 1-三氟-4-(2-吡啶基)-4-氧代丁基))甘氨酸甲酯(3z):白色液体, 产率80%. 1H NMR (500 MHz, CDCl3) δ: 8.69 (d, J=4.5 Hz, 1H), 8.07 (d, J=7.8 Hz, 1H), 7.88~7.84 (m, 1H), 7.52~7.50 (m, 1H), 3.98~3.84 (m, 1H), 3.68~3.55 (m, 6H), 3.45 (dd, J=17.2, 3.3 Hz, 1H), 2.06 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -75.4; 13C NMR (125 MHz, CDCl3) δ: 197.7, 172.0, 152.7, 149.1, 137.0, 127.6, 126.6 (q, J=282.8 Hz), 122.0, 55.9 (q, J=28.9 Hz), 51.8, 49.5, 37.6, 37.6. HRMS (ESI) calcd for C12H13F3N2NaO3 (M+Na+): 313.0770, found 313.0776.

    N-(2-(1, 1, 1-三氟-4-环己基-4-氧代丁基))甘氨酸甲酯(3aa):白色液体, 产率90%. 1H NMR (400 MHz, CDCl3) δ: 3.72 (s, 3H), 3.69~3.51 (m, 3H), 2.83~2.68 (m, 2H), 2.39~2.33 (m, 1H), 1.88~1.81 (m, 5H), 1.68 (d, J=11.1 Hz, 1H), 1.39~1.18 (m, 5H); 19F NMR (376 MHz, CDCl3) δ: -75.4; 13C NMR (100 MHz, CDCl3) δ: 209.6, 172.1, 126.5 (q, J=282.4 Hz), 55.4 (q, J=28.9 Hz), 52.0, 51.9, 51.1, 49.7, 40.4, 28.2, 28.1, 25.7, 25.5, 25.5. HRMS (ESI) calcd for C13H20F3NNaO3 (M+Na+): 318.1287, found 318.1289.

    N-(2-(1, 1, 1, 2, 2-五氟-5-苯基-5-氧代戊基))甘氨酸甲酯(3ba):黄色固体, 产率65%. m.p. 42~43 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J=7.5 Hz, 2H), 7.61 (t, J=7.4 Hz, 1H), 7.49 (t, J=7.6 Hz, 2H), 4.06 (d, J=9.3 Hz, 1H), 3.61 (d, J=14.1 Hz, 5H), 3.36 (d, J=5.8 Hz, 2H), 1.78 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -80.8 (s), -117.4 (d, J=274.1 Hz), -124.8 (d, J=274.2 Hz); 13C NMR (100 MHz, CDCl3) δ: 195.9, 172.3, 136.3, 133.7, 128.8, 128.1, 120.7 (t, J=36.2 Hz), 118.1~117.5 (m), 115.4 (d, J=35.5 Hz), 54.9~54.4 (m), 52.0, 51.9, 49.6, 38.2. HRMS (ESI) calcd for C14H14F5NNaO3 (M+Na+): 362.0786, found 362.0793.

    N-(2-(1, 1, 1, 2, 2, 3, 3-七氟-6-苯基-6-氧代己基))甘氨酸甲酯(3ca):黄色固体, 产率62%. m.p. 45~46 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.96 (d, J=7.4 Hz, 2H), 7.62~7.47 (m, 3H), 4.15~4.11 (m, 1H), 3.61 (d, J=8.6 Hz, 5H), 3.37 (d, J=5.1 Hz, 2H), 1.76 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -80.9 (dd, J=11.3, 9.1 Hz), -114.8~-115.6 (m), -121.1~121.9 (m), -123.6~125.9 (m); 13C NMR (125 MHz, CDCl3) δ: 195.9, 172.4, 136.3, 133.7, 128.8, 128.1, 121.2 (d, J=34.3 Hz), 119.1 (dd, J=49.0, 19.3 Hz), 116.8 (dd, J=62.0, 31.7 Hz), 114.8 (dd, J=59.9, 29.2 Hz), 111.8 (dd, J=73.3, 37.5 Hz), 109.7 (dd, J=74.2, 36.7 Hz), 107.6 (dd, J=73.6, 37.6 Hz), 55.0 (dd, J=25.3, 21.5 Hz), 51.9, 49.6, 38.4. HRMS (ESI) calcd for C15H14F7NNaO3 (M+Na+): 412.0754, found 412.0760.

    3-(苄基氨基)-4, 4, 4-三氟-1-(4-氯苯基)丁-1-酮(3da):白色液体, 产率72%. 1H NMR (400 MHz, CDCl3) δ: 7.87~7.84 (m, 2H), 7.45~7.42 (m, 2H), 7.27~7.20 (m, 5H), 4.01~3.88 (m, 3H), 3.26~3.13 (m, 2H), 1.58 (s, 1H); 19F NMR (376 MHz, CDCl3) δ: -74.4; 13C NMR (100 MHz, CDCl3) δ: 194.9, 140.2, 139.4, 134.8, 129.6, 129.1, 128.4, 128.3, 127.3, 126.8 (q, J=283.7 Hz), 55.7 (q, J=28.5 Hz), 52.5, 38.5. HRMS (ESI) calcd for C17H15ClF3NNaO (M+Na+): 364.0686, found 364.0688.

    辅助材料(Supporting Information)  产物的1H NMR、13C NMR、19F NMR核磁表征谱图与产物1d的单晶数据.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.

    1. [1]

      (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188.
      (b) Patonay, T.; Konya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011, 40, 2797.
      (c) Jiang, Y.; Kuang, C.; Han, C.; Wang, H.; Liang, X. Chin. J. Org. Chem. 2012, 32, 2231(in Chinese).
      (江玉波, 匡春香, 韩春美, 王红, 梁雪秋, 有机化学, 2012, 32, 2231.)
      (d) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.
      (e) Lubriks, D.; Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134, 15436.

    2. [2]

      (a) Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 565.
      (b) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
      (c) Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Chem. Rev. 2016, 116, 5689.
      (d) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
      (e) Shih, J.-L.; Jansone-Popova, S.; Huynh, C.; May, J. A. Chem. Sci. 2017, 8, 7132.

    3. [3]

      (a) Buchner, E.; Curtius, T. Chem. Ber. 1885, 18, 2371.
      (b) Curtius, T. Chem. Ber. 1890, 23, 3023.
      (c) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
      (d) Curtius, T. Chem. Ztg. 1912, 35, 249.
      (e) Curtius, T. J. Prakt. Chem. 1930, 125, 303.
      (f) Li, D.; Wu, T.; Liang, K.; Xia, C. Org. Lett. 2016, 18, 2228.
      (g) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 12153.

    4. [4]

      (a) Schmidt, K. F. Z. Angew. Chem. Int. Ed. 1923, 36, 511.
      (b) Schmidt, K. F. Chem. Ber. 1924, 57, 704.
      (c) Gu, P.; Sun, J.; Kang, X.-Y.; Yi, M.; Li, X.-Q.; Xue, P.; Li, R. Org. Lett., 2013, 15, 1125.
      (d) Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Porubsky, P.; Aube, J. J. Am. Chem. Soc. 2013, 135, 9000.
      (e) Wang, B.-J.; Xue, P.; Gu, P. Chem. Commun. 2015, 51, 2277.
      (f) Chen, P.; Sun, C.-H.; Wang, Y.; Xue, Y.; Chen, C.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1643.

    5. [5]

      (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
      (b) Gololobov, Y. G. Tetrahedron 1992, 48, 1353.
      (c) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1980, 37, 437.
      Staudinger reduction:
      (d) Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; Delft, F. L. Adv. Synth. Catal. 2012, 354, 1417.
      (e) Lenstra, D. C.; Lenting, P. E.; Mecinović, J. Green Chem. 2018, 20, 4418.
      Staudinger ligation reaction:
      (f) Kumar, R.; Ermolatev, D. S.; Eycken, E. V. J. Org. Chem. 2013, 78, 5737.
      (g) Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc. 2013, 135, 14936.
      (h) Andrews, K. G.; Denton, R. M. Chem. Commun. 2017, 53, 7982.
      (i) Yang, Y.-Y.; Shou, W.-G.; Hong, D.; Wang, Y.-G. J. Org. Chem. 2008, 73, 3574.
      (j) White, P. B.; Rijpkema, S. J.; Bunschoten, R. P.; Mecinovic, J. Org. Lett. 2019, 21, 1011.

    6. [6]

      Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y.-L.; Zhang, J. Angew. Chem. Int. Ed. 2018, 57, 15787. doi: 10.1002/anie.201810253

    7. [7]

      CCDC 1920161包含化合物3d的晶体学数据.这些数据可以从"The Cambridge Crystallographic Data Centre"免费获得.

  • 图式 1  Staudinger反应

    Scheme 1  Staudinger reaction

    图式 2  克级规模制备

    Scheme 2  Gram-scale reaction

    图式 3  控制实验

    Scheme 3  Control experiments

    图 1  (a) 二苯基甲基磷的核磁共振磷谱; (b) α, β-不饱和酮1h与二苯基甲基膦的核磁共振磷谱; (c)叠氮乙酸甲酯与二苯基甲基膦的核磁共振磷谱

    Figure 1  31P NMR spectra of Ph2PMe (a), Ph2PMe containing trifluoromethyl substituted α, β-unsaturated ketone (b), and Ph2PMe containing methyl 2-azidoacetate (c)

    图式 4  可能的反应机理

    Scheme 4  Proposed reaction mechanisms

    表 1  反应条件的优化a

    Table 1.  Optimization of the reaction conditions

    Entry Phosphine Solvent Yieldb/%
    1c Ph2PMe Toluene 46
    2 Ph2PMe Toluene 69
    3 Ph2PEt Toluene 44
    4 PhPMe2 Toluene 64
    5 (nBu)3P Toluene Trace
    6 (tBu)3P Toluene n. r.
    7 Ph3P Toluene 65
    8 DPPM Toluene Trace
    9 DPPP Toluene 68
    10 DPPB Toluene 65
    11 Ph2PMe DCM 50
    12 Ph2PMe DCE 75 (50)f
    13 Ph2PMe THF 62
    14 Ph2PMe MeOH 20
    15 Ph2PMe CH3CN 43
    16 Ph2PMe Acetone 41
    17 Ph2PMe Dioxane 41
    18 Ph2PMe CHCl3 54
    19 Ph2PMe PhCl 49
    20 Ph2PMe o-Xylene 53
    21 Ph2PMe p-Xylene 44
    22 Ph2PMe m-Xylene 58
    23 Ph2PMe H2O/DCE 53
    24d Ph2PMe DCE 86
    25e Ph2PMe DCE 90 (78f)
    a Reaction conditions: 1h (0.1 mmol), 2 (0.12 mmol), and phosphine (0.1 mmol) in the solvent specified (1 mL) at room temperature for 12 h. b 19F NMR yield with PhCF3 as an internal standard. c Methyl acrylate (0.1 mmol) was added. d H2O (0.1 mmol) was added. e H2O (0.1 mmol) was added, Ph2PMe (1.2 equiv.) was used. f Isolated yield. DPPM=Bis(diphenylphosphino)methane. DPPP=Bis(1, 3-diphenylphosphino)propane. DPPB=1, 4-bis(diphenylphosphanyl) butane
    下载: 导出CSV

    表 2  底物范围a

    Table 2.  Substrate scope

    Entry 1 R Rf 3 Yieldb/%
    1 1a Ph CF3 3a 85
    2 1b 4-MeC6H4 CF3 3b 96
    3 1c 4-iso-Butylphenyl CF3 3c 86
    4 1d 4-MeOC6H4 CF3 3d 85
    5 1e 4-PhC6H4 CF3 3e 81
    6 1f 4-MeSC6H4 CF3 3f 86
    7 1g 4-FC6H4 CF3 3g 75
    8 1h 4-ClC6H4 CF3 3h 78
    9 1i 4-BrC6H4 CF3 3i 71
    10 1j 4-CF3OC6H4 CF3 3j 73
    11 1k 4-CF3C6H4 CF3 3k 70
    12 1l 4-O2NC6H4 CF3 3l 66
    13 1m 4-NCC6H4 CF3 3m 78
    14 1n 4-MeO2CC6H4 CF3 3n 80
    15 1o 4-MeO2SC6H4 CF3 3o 52
    16 1p 2-NO2C6H4 CF3 3p 72
    17 1q 3-NO2C6H4 CF3 3q 65
    18 1r 2-BrC6H4 CF3 3r 73
    19 1s 3-BrC6H4 CF3 3s 80
    20 1t 2-MeOC6H4 CF3 3t 75
    21 1u 3, 4-Cl2C6H3 CF3 3u 68
    22 1v 3, 5-(CF3)2C6H3 CF3 3v 50
    23 1w 2-Naphthyl CF3 3w 95
    24 1x 2-Furyl CF3 3x 65
    25 1y 2-Thienyl CF3 3y 92
    26 1z 2-Pyridyl CF3 3z 80
    27 1aa Cyclohexyl CF3 3aa 90
    28 1ba Ph C2F5 3ba 65
    29 1ca Ph C3F7 3ca 62
    30c 1h 4-ClC6H4 CF3 3da 72
    a Reactions were performed with 1 (0.3 mmol), 2 (0.36 mmol), and Ph2PMe (0.36 mmol) in DCE (3.0 mL) at room temperature for 12 h. b Yield of isolated product. DCE=1, 2-Dichloroethane. c BnN3 was used instead of 2.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  1542
  • HTML全文浏览量:  334
文章相关
  • 发布日期:  2019-08-25
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-07-09
  • 网络出版日期:  2019-08-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章