Citation: Li Mingrui, Ding Qifeng, Li Boyang, Yu Yang, Huang He, Huang Fei. Progress in the Synthesis of 1, 2, 4-Triazines by Tandem Cyclization[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2713-2725. doi: 10.6023/cjoc201905036 shu

Progress in the Synthesis of 1, 2, 4-Triazines by Tandem Cyclization

  • Corresponding author: Huang Fei, huangfei0208@yeah.net
  • Received Date: 14 May 2019
    Revised Date: 3 June 2019
    Available Online: 24 October 2019

    Fund Project: the National Natural Science Foundation of China 21901124the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture XTE1850Project supported by the National Natural Science Foundation of China (No. 21901124), the Jiangsu University Natural Science Research Program (No. 19KJB150032), the China Postdoctoral Science Foundation (No. 2019M651809), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1850) and the Postdoctoral Science Foundation of Anhui Province (No. 2018B252)the Jiangsu University Natural Science Research Program 19KJB150032the China Postdoctoral Science Foundation 2019M651809the Postdoctoral Science Foundation of Anhui Province 2018B252

Figures(25)

  • 1, 2, 4-Triazine compounds are an important class of nitrogen-containing heterocyclic compounds. They have wide applications in the fields of medicine, chemicals and materials. Therefore, green and highly efficient synthesis of 1, 2, 4-triazine compounds is increasingly attracting the attention of researchers. By tandem cyclization reaction, the post-treatment of intermediate is avoided, and the one-pot synthesis of triazine compounds is the most efficient and direct synthesis method, which conforms to the concept of green chemistry for its step and atomic economy. The formation of C-N bond based on tandem cyclization to give 1, 2, 4-triazine compounds is reviewed. The synthetic method, reaction mechanism and application of 1, 2, 4-triazine compounds are introduced under transition-metal and metal-free conditions in the past ten years. The prospects of synthesis of triazine rings are also discussed.
  • 加载中
    1. [1]

      (a) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
      (b) Kelly, T. R.; Elliott, E. L.; Lebedev, R.; Pagalday, J. J. Am. Chem. Soc. 2006, 128, 5646.
      (c) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.

    2. [2]

    3. [3]

      (a) Patrizia, D.; Annamaria, M.; Paola, B.; Antonino, L.; Alessandra, M.; Anna, M. A.; Gaetano, D.; Girolamo, C. Bioorg. Med. Chem. 2007, 15, 343.
      (b) Tomas, G.; Eva, R.; Petr, D.; Marian, H.; Vladimir, K. Monatsh. Chem. 2010, 141, 709.
      (c) Jaiprakash, N. S.; Devanand, B. S. Bioorg. Med. Chem. Lett. 2010, 20, 742.
      (d) Badran, M. M.; Ismail, M. A. H.; Abdu, N.; Abdel-Hakeem, M. Alexandria J. Pharm. Sci. 1999, 13, 101.
      (e) Thiele, K.; Gordon, C. J. S.; Fischer, J.; Jahn, U. EP 28660, 1981.
      (f) Messmer, A.; Batori, S.; Hajos, G.; Benko, P. US 4602018, 1986.
      (g) Kelly, T. R.; Elliott, E. L.; Lebedev, R.; Pagalday, J. J. Am. Chem. Soc. 2006, 128, 5646.

    4. [4]

      Solaleh, K. T.; Niloufar, A.; Mohsen, A. Apoptosis 2010, 15, 738.  doi: 10.1007/s10495-010-0496-6

    5. [5]

    6. [6]

      (a) Hay, M. P.; Hicks, K. O.; Pchalek, K.; Lee, H. H.; Blaser, A.; Pruijn, F. B.; Anderson, R. F.; Shinde, S. S.; Wilson, W. R.; Denny, W. A. J. Med. Chem. 2008, 51, 6853.
      (b) Vaithianathan, S.; Raman, S.; Jiang, W. L.; Ting, T. Y.; Kane, M. A.; Polli, J. E. Mol. Pharmaceutics 2015, 12, 2436.
      (c) Lojanapiwat, B.; Nimitvilai, S.; Bamroongya, M.; Jirajariyavej, S.; Tiradechavat, C.; Malithong, A.; Predanon, C.; Tanphaichitra, D.; Lertsupphakul, B. Infect. Drug Resist. 2019, 12, 173.

    7. [7]

      Suzuki, H.; Kawakami, T. Synthesis 1997, 855.

    8. [8]

      Baxter, M. G; Elphick, A. R.; Miller, A. A. US 4486354, 1984.

    9. [9]

      Zhang, P.; Wang, J. J.; Xiao, H.; Jiang, Y.; Jiang, X. M. CN 103539803, 2014.

    10. [10]

      (a) Dowling, M. S.; Jiao, W. H.; Hou, J.; Jiang, Y. C.; Gong, S. S. J. Org. Chem. 2018, 83, 4229.
      (b) Rätz, R.; Schroeder, H. J. Org. Chem. 1958, 23, 1931.
      (c) Saraswathi, T. V.; Srinivasan, V. R. Tetrahedron Lett. 1971, 12, 2315.
      (d) Kozhevnikov, V. N.; Kozhevnikov, D. N.; Shabunina, O. V.; Rusinov, V. L.; Chupakhin, O. N. Tetrahedron Lett. 2005, 46, 1791.

    11. [11]

      (a) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247
      (b) Dydio, P.; Key, H. M.; Hayashi, H. J. Am. Chem. Soc. 2017, 139, 1750.
      (c) Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. ACS Catal. 2018, 8, 5732.
      (d) Wang, P.; Li, G. C.; Jain, P. J. Am. Chem. Soc. 2016, 138, 14092.

    12. [12]

      Liu, L.; Tan, C.; Fan, R.; Wang, Z. H.; Du, H. G.; Xu, K.; Tan, J. J. Org. Biomol. Chem. 2019, 17, 252.  doi: 10.1039/C8OB02826E

    13. [13]

      Walsh, P. J.; Deng, G. G.; Li, M. Y.; Yu, K. L.; Liu, C. X.; Liu, Z. F.; Duan, S. Z.; Chen, W.; Yang, X. D.; Zhang, H. B. Angew. Chem., Int. Ed. 2019, 58, 2826.  doi: 10.1002/anie.201812369

    14. [14]

      Wang, J. N.; Chen, S. Q.; Liu, Z. W. J. Org. Chem. 2019, 84, 1348.  doi: 10.1021/acs.joc.8b02820

    15. [15]

      Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 117, 2250.  doi: 10.1002/ange.200461496

    16. [16]

      Guo, H. C.; Liu, H. L.; Zhu, F. L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X. P.; Wang, M. Angew. Chem., Int. Ed. 2013, 52, 12641.  doi: 10.1002/anie.201307317

    17. [17]

      Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.  doi: 10.1039/c1cc10779h

    18. [18]

      Du, J.; Xu, X.; Li, Y.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004.  doi: 10.1021/ol501829k

    19. [19]

      Cheng, X.; Cao, X.; Xuan, J.; Xiao, W. J. Org. Lett. 2018, 20, 52.  doi: 10.1021/acs.orglett.7b03344

    20. [20]

      Chen, Z.; Ren, N.; Ma, X. X.; Nie, J.; Zhang, F. G.; Ma, J. A. ACS Catal. 2019, 9, 4600.  doi: 10.1021/acscatal.9b00846

    21. [21]

      Hong, D.; Lin, X. F.; Zhu, Y. X.; Lei, M.; Wang, Y. G. Org. Lett. 2009, 11, 5678.  doi: 10.1021/ol902376w

    22. [22]

      Shi, B.; Lewis, W.; Campbell, I. B.; Moody, C. J. Org. Lett. 2009, 11, 3686.  doi: 10.1021/ol901502u

    23. [23]

      Wu, W.; Wang, J.; Wang, Y.; Huang, Y.; Tan, Y.; Weng, Z. Q. Angew. Chem., Int. Ed. 2017, 56, 10476.  doi: 10.1002/anie.201705620

    24. [24]

      Lin, B.; Wu, W.; Weng, Z. Q Tetrahedron 2019, 75, 2843.  doi: 10.1016/j.tet.2019.04.005

    25. [25]

      Meng, J.; Wen, M.; Zhang, S.; Pan, P.; Yu, X.; Deng, W. P. J. Org. Chem. 2017, 82, 1676.  doi: 10.1021/acs.joc.6b02846

    26. [26]

      Tang, D.; Wang, J.; Wu, P.; Guo, X.; Li, J. H.; Yang, S.; Chen, B. H. RSC Adv. 2016, 6, 12514.  doi: 10.1039/C5RA26638F

    27. [27]

      Zhang, L.; Chen, J. J.; Liu, S. S.; Liang, Y. X.; Zhao, Y. L. Adv. Synth. Catal. 2018, 360, 2172.  doi: 10.1002/adsc.201800030

    28. [28]

      Bigot, A.; Blythe, J.; Pandya, C.; Wagner, T.; Loiseleur, O. Org. Lett. 2010, 13, 192.

    29. [29]

      Crespin, L.; Biancalana, L.; Morack, T.; Blakemore, D. C.; Ley, S. V. Org. Lett. 2017, 19, 1084.  doi: 10.1021/acs.orglett.7b00101

    30. [30]

      Karthikeyan, M. S.; Mahalinga, M.; Karegoundar, P.; Poojary, B.; Holla, B. S. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 3231.  doi: 10.1080/10426500902979917

    31. [31]

      Tamboli, R. S.; Giridhar, R.; Mande, H. M.; Shah, S. R.; Yadav, M. R. Synth. Commum. 2014, 44, 2192.  doi: 10.1080/00397911.2014.891040

    32. [32]

      Ghorbani-Vaghei, R.; Shahriari, A.; Salimi, Z.; Hajinazari, S. RSC Adv. 2015, 5, 3665.  doi: 10.1039/C4RA10892B

    33. [33]

      Savva, A. C.; Mirallai, S. I.; Zissimou, G. A.; Berezin, A. A.; Demetriades, M.; Kourtellaris, A.; Constantinides, C. P.; Nicolaides, C.; Trypiniotis, T, ; Koutentis, P. A. J. Org. Chem. 2017, 82, 7564.  doi: 10.1021/acs.joc.7b01297

    34. [34]

      Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Jesús, M. Tetrahedron 2007, 63, 523.  doi: 10.1016/j.tet.2006.09.048

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    12. [12]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    19. [19]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    20. [20]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(46)
  • Abstract views(4432)
  • HTML views(1407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return