氮杂环卡宾催化下官能化萘并吡喃酮的串联合成

李莎 徐嘉煜 罗鲜 杨雯涵 姚昌盛

引用本文: 李莎, 徐嘉煜, 罗鲜, 杨雯涵, 姚昌盛. 氮杂环卡宾催化下官能化萘并吡喃酮的串联合成[J]. 有机化学, 2020, 40(2): 470-477. doi: 10.6023/cjoc201905034 shu
Citation:  Li Sha, Xu Jiayu, Luo Xian, Yang Wenhan, Yao Changsheng. Efficient N-Heterocyclic Carbene-Catalyzed Cascade Synthesis of Functionalized Naphthopyranone[J]. Chinese Journal of Organic Chemistry, 2020, 40(2): 470-477. doi: 10.6023/cjoc201905034 shu

氮杂环卡宾催化下官能化萘并吡喃酮的串联合成

    通讯作者: 姚昌盛, E-mail: csyao@jsnu.edu.cn
  • 基金项目:

    国家自然科学基金(Nos.21871113,21372101)资助项目

摘要: 在氮杂环卡宾(NHC)催化下,查尔酮衍生物与α-溴代烯醛经过"Michael加成-Michael加成-内酯化"等串联过程,一步合成了官能化萘并吡喃酮.该方法具有产率高、底物易得和条件温和等优点,为萘并吡喃酮的高效构建和官能化提供了新思路.

English

  • 天然产物往往具有独特的骨架及多样的药理活性, 是生物活性分子设计的先导化合物来源[1].萘并吡喃酮骨架广泛存在于天然产物和药物分子中[2].例如Splito- micin是一种组蛋白脱乙酰酶抑制剂[3]; 核心骨架为萘并吡喃酮的Cephanolide是一种存在于粗榧杉中的天然产物, 因其具有潜在的抗肿瘤活性而受到学者们的广泛关注[4]; 萘并吡喃酮衍生物Terretonin L具有抗炎效用; 黄藤内酯(Columbin)是一种多取代的萘并吡喃酮化合物, 由于具有较好的消炎作用而获得广泛应用[5](图 1).此外一些萘并吡喃酮类化合物还具有镇痛、抗艾滋病病毒(HIV)和抗抑郁等作用, 所以该骨架的构建与修饰一直是有机合成的研究热点之一.

    图 1

    图 1.  含有萘并吡喃酮的天然产物或生物活性分子
    Figure 1.  Naphthopyranone-based natural products or biologically relevant compounds

    对于此类化合物的合成已经有许多报道. 2003年, Cho课题组[6]报道了利用钯催化3, 5-二溴-2-吡喃酮发生分子内Diels-Alder串联环化(IMDA)反应, 以良好至优异的产率得到萘并吡喃酮衍生物, 为该类化合物的简洁高效合成提供了新策略(Scheme 1a).随后, Chi课题组[7]报道了在路易斯酸存在下, 由N-杂环卡宾(NHC)促进的邻二烯酮与烯醛的串联环化, 以高区域选择性和立体选择性构建萘并吡喃酮骨架(Scheme 1b). 2011年, Chen课题组[8]报道了利用二苯基脯氨醇的硅醚在0 ℃下催化α, β-不饱和醛与β-四氢萘酮发生串联环化, 经两步反应成功合成了一系列官能化萘并吡喃酮衍生物, 具有较优异的产率和对映选择性(Scheme 1c).尽管这些方案都可以成功合成目标产物, 但是往往需要用到昂贵的金属催化剂, 此外苛刻的反应条件也限制了反应的进一步应用.因此亟需开发一种成本低廉、操作简洁、条件温和、适用性强且行之有效的方案来获得萘并吡喃酮衍生物.

    图式 1

    图式 1.  官能化萘并吡喃酮的合成
    Scheme 1.  Syntheses of functionalized naphthopyranones

    在有机合成反应中, 利用有机小分子催化实现碳-碳键的构建, 具有举足轻重的意义.代表性的有机小分子催化剂如NHC[9]、叔膦[10]、胺[11]等, 这其中NHC是一类重要的有机小分子催化剂.经过几十年的发展, 研究人员发现NHC可以与底物反应形成多种中间体, 如Breslow中间体、烯醇负离子、高烯醇负离子、烯基烯醇负离子和α, β-不饱和酰基唑离子等[12].其中α, β-不饱和酰基唑离子是一类重要的有机合成中间体, 可以由α, β-不饱和醛[13]、酸[14]、酯[15]、酰卤[16]、溴代烯醛[17]等底物转化而成.由于该中间体具有成键高效性, 可以作为C3合成子参与稠环类化合物的串联合成.例如, Hui课题组[18]和Chi课题组[19]将NHC催化形成的该中间体用于串联环化, 以良好的收率构建了官能化的吡咯并[3, 2-c]喹啉和四氢喹啉, 具有优异的非对映选择性和对映选择性(Schemes 2a~2c). 2017年, Xu课题组[20]报道了一个高效的NHC催化的“sulfa-Michael加成- Michael加成-分子内酯化”串联反应策略, 合成了一系列硫代色满衍生物.该策略具有原子经济性高, 反应条件温和, 产率较高等优点, 并且具有优异的非对映选择性和对映选择性(Scheme 2d).

    图式 2

    图式 2.  NHC的串联催化反应
    Scheme 2.  NHC-catalyzed cascade reaction

    鉴于萘并吡喃酮衍生物在医药以及农业领域的重要性, 在课题组之前的NHC催化杂环串联构建的研究基础上, 我们设计利用NHC催化α-溴代烯醛经过a3-d3极性反转、脱溴, 形成的α, β-不饱和酰基唑离子中间体作为C3合成子, 与一分子硝基取代的邻甲基查尔酮经过“Michael加成-Michael加成-内酯化”的串联过程, 合成官能化的萘并吡喃酮衍生物(Scheme 1d).

    以硝基取代的邻甲基查尔酮(1a)和α-溴代肉桂醛(2a)合成官能化萘并吡喃酮(3a)作为模板反应, 对反应的最佳条件进行筛选(表 1).首先, 在二氯乙烷(DCE)作溶剂, K2CO3作碱的条件下对催化剂进行筛选, 结果发现咪唑盐AB均可以催化该反应, 产率分别为65%和37%(表 1, Entries 1, 2).当使用三唑盐C1, C2, C3时, 未检测到产物点.接着, 以DCE为溶剂, 以咪唑盐A为催化剂, 对反应体系的碱进行筛选, 结果发现相较于Cs2CO3, NaOAc, t-BuOK和1, 4-二氮杂二环[2.2.2]辛烷(DABCO), K2CO3作碱时反应产率更高(表 1, Entry 1).随后, 以咪唑盐A为催化剂, K2CO3作碱对溶剂进行筛选, 确定最佳溶剂为二氯甲烷(DCM) (表 1, Entry 13).最后, 对温度进行筛选, 发现在0 ℃下反应产率最高.综上, 最终确定该反应最佳反应条件为咪唑盐A为催化剂前体, K2CO3为碱, 在DCM溶液中置于0 ℃中反应(表 1, Entry 16).

    表 1

    表 1  合成多官能化萘并吡喃酮的反应条件优化a
    Table 1.  Reaction optimization for the synthesis of multi- functionalized naphthopyranone
    下载: 导出CSV
    Entry Cat. Solvent Base Yieldb/% dr c/%
    1 A DCE K2CO3 65 56:44
    2 B DCE K2CO3 37 53:47
    3 C1 DCE K2CO3 N.D
    4 C2 DCE K2CO3 N.D
    5 C3 DCE K2CO3 N.D
    6 A DCE Cs2CO3 54 51:49
    7 A DCE NaOAc 46 55:45
    8 A DCE t-BuOK 43 53:47
    9 A DCE DABCO Trace
    10 A THF K2CO3 Trace
    11 A ACN K2CO3 36 65:35
    12 A Toluene K2CO3 Trace
    13 A DCM K2CO3 76 72:28
    14d A DCM K2CO3 82 69:31
    15e A DCM K2CO3 87 59:41
    16f A DCM K2CO3 94 80:20
    a All reactions were performed in a 10 mL Schleck tube on a 0.15 mmol scale with 1a(46.8 mg, 0.15 mmol, 1.0 equiv.), 2a (38.0 mg, 0.18 mmol, 1.2 equiv.), cat. (0.03 mmol, 20 mol%) and base (0.30 mmol, 2.0 equiv.) in an anhydrous solvent (2.0 mL) at 25 ℃ under N2. b Isolated yields based on 1a. DABCO=triethylenediamine; N.D.=not determined. c Diastereomeric ratio was determined by 1H NMR analysis of the crude product. d Reaction was performed at 15 ℃. e Reaction was performed at 5 ℃. f Reaction was performed at 0 ℃.

    随后, 对该方法的适用范围进行了探究.首先尝试改变α-溴代烯醛苯环上的取代基, 发现当其苯环的邻位、间位和对位上分别连有吸电子取代基(4-Cl, 4-F, 2-Br, 3-Cl)时, 该反应能够顺利进行, 并以优异的产率给出相应的稠环化合物(表 2, Entries 2~5).接着对不饱和溴代醛苯环上连有供电子基团时的反应进行了尝试, 结果显示当苯环上连有甲基、甲氧基时, 反应效果良好(表 2, Entries 6, 7).随后尝试改变查尔酮衍生物苯环上的取代基.结果显示, 其苯环上不管是连有吸电子基还是供电子基(4-Cl, 4-Me, 4-Br, 4-MeO), 该方法仍然适用, 并以优异的产率和非对应选择性(3h, 93:7)得到目标产物(表 2, Entries 8~13).此外当将R2基团换成甲基时, 该反应仍能以中等产率得到目标产物(表 2, Entry 14).这些结果显示, 该方法具有广泛的底物范围.

    表 2

    表 2  NHC催化下多取代官能化萘并吡喃酮的合成a
    Table 2.  NHC-catalyzed syntheses of multi-functionalized naphthopyranones
    下载: 导出CSV
    Entry R1 R2 Product Yieldb/% drc/%
    1 Ph Ph 3a 94 80:20
    2 Ph 4-ClC6H4 3b 92 81:19
    3 Ph 4-FC6H4 3c 87 80:20
    4 Ph 2-BrC6H4 3d 75 90:10
    5 Ph 3-ClC6H4 3e 68 85:15
    6 Ph 3-MeC6H4 3f 85 78:22
    7 Ph 4-MeOC6H4 3g 87 66:34
    8 4-ClC6H4 Ph 3h 89 93:7
    9 4-BrC6H4 Ph 3i 91 91:9
    10 4-MeOC6H4 Ph 3j 86 81:19
    11 3-MeC6H4 4-MeC6H4 3k 78 75:25
    12 4-ClC6H4 4-ClC6H4 3l 70 95:5
    13 4-MeOC6H4 4-MeOC6H4 3m 85 76:24
    14 Ph Me 3n 52 73:27
    a All reactions were performed in a 10 mL Schleck tube on a 0.15 mmol scale with 1(0.15 mmol, 1.0 equiv.), 2 (0.18 mmol, 1.2 equiv.), A (10.2 mg, 0.03 mmol, 20 mol%) and K2CO3 (41.4 mg, 0.30 mmol, 2.0 equiv.) in DCM (2.0 mL) at 0 ℃ under N2. b Isolated yields. c Diastereomeric ratio was determined by 1H NMR analysis of the crude product.

    此外, 为了验证这一方法的实用性, 以化合物3a的合成为例, 进行了1 mmol的放大量实验.结果显示该反应仍然能顺利进行, 并以90%的产率得到目标产物(Scheme 3), 证实该体系在放大量时反应效果可以保持, 具有较好的实用性.

    图式 3

    图式 3.  1 mmol规模合成
    Scheme 3.  Reaction on 1 mmol scale

    所有产物均经过NMR、IR和HRMS的表征.根据产物的结构推测了反应的可能机理(图 2).首先在碱的作用下, 催化剂前体A脱去质子, 形成带有孤对电子的NHC.其孤对电子进攻α-溴代烯醛2生成Breslow中间体, 经电子转移发生a3-d3极性反转, 脱去溴离子互变异构形成α, β-不饱和酰基唑离子I.紧接着, 邻甲基查尔酮1在碱作用下失去质子形成碳负离子中间体II, 进攻作为Michael受体的中间体Iβ位碳原子, 进行第一次Michael加成.后续经电子转移和环化过程给出中间体III.接着进行第二次Michael加成反应, 生成中间体IV.最后经过分子内酯化, 脱去NHC得到最终产物3, 完成催化循环.

    图 2

    图 2.  可能的反应机理
    Figure 2.  Possible mechanism

    NHC和α-溴代烯醛形成的α, β-不饱和酰基唑离子可以作为C3合成子, 与硝基取代的邻甲基查尔酮经过“Michael加成-Michael加成-内酯化”等串联过程, 在温和条件下一步构建萘并吡喃酮骨架, 具有操作简便, 产率高等优点, 为该类稠环化合物的合成提供了新途径.

    所需溶剂均已做无水处理.柱层析所用石油醚需蒸馏并收集60~90 ℃馏分, 使用100~200目硅胶.核磁共振仪: 1H NMR Bruker DPX, 测试频率400 MHz, 13C NMR Bruker DPX, 测试频率100 MHz, 并以CDCl3或DMSO-d6为溶剂, 以四甲基硅烷(TMS)为内标. HRMS谱由micr- OTOF-QII高分辨质谱仪测定, 熔点测定使用XT-5型显微熔点测定仪, 温度计未经校正.溶剂及其他实验药品在安耐吉、北京伊诺凯科技有限公司、网化商城等公司购买.

    取干燥的10 mL Schlenk反应管作反应器, 加入查尔酮衍生物1 (0.15 mmol), α-溴烯醛2 (0.18 mmol), 咪唑催化剂前体A (0.03 mmol, 10.2 mg), K2CO3 (0.30 mmol, 41.4 mg)的混合物, 通入氮气置换空气, 随后使用注射器将2.0 mL干燥DCM注入Schlenk管.将反应体系置于0 ℃, 搅拌反应.利用薄层色谱(TLC)跟踪, 监测到反应结束后, 用旋转蒸发仪除去溶剂, 采用柱层析提纯产物[洗脱剂: V(石油醚):V(乙酸乙酯)=10:1], 得到黄色固体3a~3n.

    7, 9-二硝基-2, 5-二苯基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并-4-酮(3a):黄色固体62.2 mg, 产率94%. m.p. 56~57 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.69 (d, J=2.3 Hz, 1H), 8.63 (d, J=2.3 Hz, 1H), 8.04 (d, J=7.7 Hz, 2H), 7.56 (q, J=7.8, 7.4 Hz, 5H), 7.45~7.32 (m, 3H), 7.24 (s, 1H), 5.66 (dd, J=7.9, 3.6 Hz, 1H), 4.60 (t, J=6.8 Hz, 1H), 4.01~3.82 (m, 2H), 3.26 (s, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 197.30, 149.31, 146.21, 142.57, 137.26, 136.23, 134.95, 133.85, 129.97, 129.36, 129.35, 129.17, 128.78, 128.75, 124.74, 124.49, 118.56, 77.10, 73.86, 44.68, 31.77; IR (KBr) v: 1684.3, 1554.0, 1345.3, 1102.8, 754.5, 691.6 cm-1; HRMS (APCI) calcd for C25H19N2O6 [M+H]+ 443.1243, found 443.1242.

    5-(4-氯苯基)-7, 9-二硝基-2-苯基-4a, 5, 6, 10b-四氢- 4H-苯并[f]异苯并-4-酮(3b):黄色固体65.7 mg, 产率92%. m.p. 67~68 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.69 (s, 1H), 8.62 (s, 1H), 8.04 (d, J=6.5 Hz, 1H), 7.68~ 7.50 (m, 6H), 7.45 (d, J=8.3 Hz, 2H), 7.22 (s, 1H), 5.73~ 5.61 (m, 1H), 4.58 (t, J=6.7 Hz, 1H), 3.98~3.78 (m, 2H), 3.32 (d, J=6.1 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 196.86, 148.89, 145.82, 142.16, 136.87, 135.78, 133.45, 133.02, 130.74, 128.81, 128.77, 128.44, 128.38, 128.35, 125.22, 124.11, 118.16, 76.68, 73.50, 44.31, 31.34; IR (KBr) v: 1712.6, 1617.2, 1400.8, 1224.9, 1146.5, 849.3, 670.5 cm-1; HRMS (APCI) calcd for C25H18ClN2O6[M+H]+ 477.0853, found 477.0832.

    5-(4-氟苯基)-7, 9-二硝基-2-苯基甲基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3c):黄色固体60.0 mg, 产率87%. m.p. 66~67 ℃; 1H NMR (400 MHz, DMSO- d6) δ: 8.70 (d, J=2.2 Hz, 1H), 8.64 (dd, J=8.7, 2.3 Hz, 1H), 8.11~8.00 (m, 2H), 7.64 (td, J=5.6, 2.4 Hz, 3H), 7.54 (t, J=7.6 Hz, 2H), 7.28~7.19 (m, 3H), 5.70~5.62 (m, 1H), 4.59 (dd, J=7.5, 5.9 Hz, 1H), 4.09~3.75 (m, 2H), 3.33 (d, J=6.8 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ: 197.23, 162.18 (J=246.5 Hz), 149.27, 146.19, 142.55, 137.24, 136.20, 133.81, 131.56 (J=8.4 Hz), 131.37 (J=3.4 Hz), 129.14, 128.93, 128.72, 125.42, 124.48, 118.52, 115.71 (J=24.1 Hz), 77.10, 73.86, 44.71, 31.75; IR (KBr) v: 1706.5, 1616.3, 1463.9, 1146.6, 1019.1, 783.1, 668.5 cm-1; HRMS (APCI) calcd for C25H18FN2O6 [M+H]+ 461.1149, found 461.1144.

    5-(2-溴苯基)-7, 9-二硝基-2-苯基甲基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3d):黄色固体58.6 mg, 产率75%. m.p. 65~66 ℃; 1H NMR (400 MHz, DMSO- d6) δ: 8.64 (d, J=2.2 Hz, 1H), 8.58 (d, J=2.3 Hz, 1H), 8.04~7.96 (m, 2H), 7.63~7.56 (m, 2H), 7.54~7.44 (m, 3H), 7.36 (t, J=7.6 Hz, 1H), 7.23 (td, J=7.7, 1.8 Hz, 1H), 7.13 (s, 1H), 5.63 (dd, J=8.1, 3.5 Hz, 1H), 4.62 (dd, J=10.4, 3.0 Hz, 1H), 4.00~3.71 (m, 2H), 3.26~3.20 (m, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 197.31, 149.28, 146.24, 142.58, 137.25, 136.04, 135.85, 133.84, 132.84, 131.25, 130.57, 129.26, 129.21, 129.17, 128.75, 128.06, 127.95, 124.50, 123.22, 118.61, 76.22, 73.91, 44.62, 31.88; IR (KBr) v: 1683.3, 1596.5, 1523.4, 1084.5, 754.3, 689.1 cm-1; HRMS (APCI) calcd for C25H18BrN2O6[M+H]+ 521.0348, found 521.0349.

    5-(3-氯苯基)-7, 9-二硝基-2-苯基-4a, 5, 6, 10b-四氢- 4H-苯并[f]异苯并-4-酮(3e):黄色固体48.5 mg, 产率68%. m.p. 71~72 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.64 (d, J=2.3 Hz, 1H), 8.60 (s, 1H), 8.13 (d, J=6.5 Hz, 1H), 7.70~7.49 (m, 6H), 7.43 (d, J=8.1 Hz, 2H), 7.20 (s, 1H), 5.69~5.57 (m, 1H), 4.49 (t, J=6.6 Hz, 1H), 3.97~ 3.78 (m, 2H), 3.34 (d, J=6.0 Hz, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 196.86, 148.70, 145.79, 142.15, 136.87, 135.76, 133.45, 129.96, 130.70, 128.81, 128.78, 128.45, 128.38, 128.35, 125.22, 124.10, 116.50, 75.68, 73.50, 44.31, 31.24; IR (KBr) v: 1636.2, 1534.5, 1490.0, 1402.8, 1345.6, 1084.8, 749.8, 689.2 cm-1; HRMS (APCI) calcd for C25H18ClN2O6[M+H]+ 477.0853, found 477.0841.

    7, 9-二硝基-2-苯基-5-(间甲苯基)-4a, 5, 6, 10b-四氢- 4H-苯并[f]异色烯-4-酮(3f):黄色固体58.2 mg, 产率85%. m.p. 63~64 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.74 (t, J=3.2 Hz, 1H), 8.33 (d, J=2.3 Hz, 1H), 8.06~8.01 (m, 2H), 7.66~7.57 (m, 1H), 7.54~7.48 (m, 2H), 7.36 (d, J=8.8 Hz, 1H), 7.29 (s, 1H), 7.14 (t, J=6.4 Hz, 1H), 7.02 (s, 1H), 5.72 (t, J=5.6 Hz, 1H), 4.39 (t, J=6.8 Hz, 1H), 3.85 (dd, J=16.6, 6.6 Hz, 1H), 3.55 (dd, J=16.5, 4.6 Hz, 1H), 3.51~3.43 (m, 2H), 2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 196.56, 149.32, 146.11, 142.35, 137.81, 136.73, 136.50, 134.51, 133.82, 129.88, 129.27, 129.22, 128.83, 128.51, 128.07, 126.11, 123.50, 122.49, 118.58, 77.89, 74.23, 44.95, 32.27, 21.43; IR (KBr) v: 1635.9, 1540.3, 1339.7, 1084.3, 668.8 cm-1; HRMS (APCI) calcd for C26H21N2O6 [M+H]+ 457.1399, found 457.1387.

    5-(4-甲氧基苯基)-7, 9-二硝基-2-苯基甲基- 4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3g):黄色固体61.6 mg, 产率87%. m.p. 87~88 ℃; 1H NMR (400 MHz, DMSO-d6) δ 8.71 (d, J=2.2 Hz, 1H), 8.61 (dd, J=9.6, 2.3 Hz, 1H), 8.07~8.04 (m, 2H), 7.66 (dt, J=7.4, 1.7 Hz, 2H), 7.31~7.23 (m, 4H), 7.19 (t, J=7.1 Hz, 2H), 5.65 (d, J=6.5 Hz, 1H), 4.58 (t, J=6.8 Hz, 1H), 3.98 (d, J=3.4 Hz, 2H), 3.33 (d, J=6.6 Hz, 1H), 2.32 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 197.32, 149.30, 146.20, 142.56, 137.91, 137.27, 137.11, 136.25, 133.84, 133.67, 130.00, 129.87, 129.18, 129.11, 128.77, 128.66, 128.40, 126.37, 124.51, 77.09, 73.90, 44.65, 36.26, 31.80, 21.42; IR (KBr) v: 1684.2, 1605.1, 1534.5, 1509.9, 1345.7, 1251.9, 1179.0, 755.2, 689.9 cm-1; HRMS (APCI) calcd for C26H21N2O7[M+H]+ 473.1349, found: 473.1721.

    2-(4-氯苯基)-7, 9-二硝基-2-苯基甲基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3h):黄色固体63.6 mg, 产率89%. m.p. 78~79 ℃; 1H NMR (400 MHz, DMSO- d6) δ: 8.69 (d, J=2.2 Hz, 1H), 8.62 (d, J=2.3 Hz, 1H), 8.03 (d, J=8.3 Hz, 2H), 7.64~7.52 (m, 4H), 7.37 (dt, J=14.2, 7.2 Hz, 3H), 7.21 (s, 1H), 5.64 (dd, J=7.6, 3.5 Hz, 1H), 4.58 (t, J=6.7 Hz, 1H), 4.02~3.71 (m, 2H), 3.33 (t, J=8.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 196.42, 149.28, 146.18, 142.39, 138.80, 136.25, 135.94, 134.90, 130.70, 129.91, 129.34, 129.26, 128.91, 128.76, 124.63, 124.53, 118.59, 77.11, 73.89, 44.68, 31.78; IR (KBr) v: 1683.6, 1648.7, 1539.9, 1346.3, 1084.9, 827.4 cm-1; HRMS (APCI) calcd for C25H18ClN2O6[M+H]+ 477.0853, found 477.0837.

    2-(4-溴苯基)-7, 9-二硝基-2-苯基甲基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3i):黄色固体71.0 mg, 产率91%. m.p. 82~83 ℃; 1H NMR (400 MHz, DMSO- d6) δ: 8.70 (d, J=2.2 Hz, 1H), 8.63 (d, J=2.3 Hz, 1H), 7.99 (d, J=8.3 Hz, 2H), 7.75 (d, J=8.1 Hz, 2H), 7.57 (d, J=7.5 Hz, 2H), 7.45~7.31 (m, 3H), 7.20 (s, 1H), 5.65 (dd, J=7.8, 3.5 Hz, 1H), 4.59 (dd, J=7.9, 5.5 Hz, 1H), 4.02~3.70 (m, 2H), 3.32 (d, J=7.0 Hz, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 196.66, 149.28, 146.19, 142.37, 136.27, 136.24, 134.89, 132.28, 132.22, 130.81, 129.88, 129.35, 128.92, 128.78, 128.02, 124.62, 124.54, 118.60, 77.09, 73.90, 44.64, 31.78; IR (KBr) v: 1683.6, 1596.1, 1534.0, 1344.8, 1091.2, 752.2, 687.3 cm-1; HRMS (APCI) calcd for C25H18BrN2O6[M+H]+ 521.0348, found 521.0339.

    2-(4-甲氧基苯基)-7, 9-二硝基-2-苯基甲基- 4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3j):黄色固体60.7 mg, 产率86%. m.p. 60~61 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.71 (d, J=2.2 Hz, 1H), 8.59 (d, J=2.3 Hz, 1H), 8.04 (d, J=8.9 Hz, 2H), 7.57 (d, J=7.3 Hz, 2H), 7.47~7.32 (m, 3H), 7.22 (s, 1H), 7.05 (d, J=9.0 Hz, 2H), 5.62 (dd, J=7.7, 3.7 Hz, 1H), 4.59 (dd, J=8.0, 5.4 Hz, 1H), 3.90~3.72 (m, 5H), 3.33 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ: 195.64, 163.75, 149.30, 146.18, 142.69, 136.21, 134.93, 131.17, 130.27, 129.88, 129.35, 128.92, 128.78, 124.73, 124.46, 118.53, 114.39, 114.33, 77.08, 74.03, 56.03, 44.27, 31.80; IR (KBr) v: 1688.5, 1540.6, 1457.6, 1083.0, 805.8, 755.0, 690.4 cm-1; HRMS (APCI) calcd for C26H21N2O7 [M+H]+ 473.1349, found 473.1732.

    7, 9-二硝基-2-(间甲苯基)-5-(对甲苯基)-4a, 5, 6, 10b-四氢-4H-苯并[f]异色烯-4-酮(3k):黄色固体55.0 mg, 产率78%. m.p. 70~71 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.74 (d, J=2.3 Hz, 1H), 8.60 (d, J=2.3 Hz, 1H), 8.05 (d, J=7.7 Hz, 2H), 7.55 (q, J=7.8, 7.4 Hz, 4H), 7.46~7.30 (m, 2H), 7.26 (s, 1H), 5.64 (dd, J=7.9, 3.6 Hz, 1H), 4.58 (t, J=6.8 Hz, 1H), 4.00~3.81 (m, 2H), 3.23 (s, 1H), 2.55 (s, 3H), 2.43 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ: 197.30, 149.31, 146.21, 142.56, 137.26, 136.23, 134.94, 133.85, 129.98, 129.36, 129.35, 129.17, 128.78, 128.75, 124.74, 124.49, 118.56, 77.10, 73.86, 44.68, 31.77, 28.41, 24.76; IR (KBr) v: 1685.2, 1636.3, 1537.7, 1398.1, 1084.1, 734.2, 686.9 cm-1; HRMS (APCI) calcd for C27H23N2O6 [M+H]+ 471.1556, found 471.1543.

    2, 5-双(4-氯苯基)-7, 9-二硝基-4a, 5, 6, 10b-四氢-4H-苯并[f]异色烯-4-酮(3l):黄色固体53.4 mg, 产率70%. m.p. 99~100 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.71 (d, J=2.3 Hz, 1H), 8.64 (d, J=2.3 Hz, 1H), 8.06 (d, J=8.4 Hz, 2H), 7.60 (dd, J=8.5, 3.6 Hz, 4H), 7.46 (d, J=8.5 Hz, 2H), 7.21 (s, 1H), 5.64 (dd, J=7.8, 3.4 Hz, 1H), 4.58 (t, J=6.7 Hz, 1H), 4.01~3.71 (m, 2H), 3.31 (d, J=6.8 Hz, 1H); 13C NMR (101 MHz, DMSO-d6)δ: 196.37, 149.28, 146.19, 142.36, 138.79, 136.16, 135.91, 133.80, 133.40, 131.12, 130.70, 129.27, 128.86, 128.84, 125.58, 124.53, 118.59, 77.03, 73.84, 44.67, 31.69; IR (KBr) v: 1646.6, 1539.9, 1507.2, 1340.5, 1084.1, 755.8, 693.4 cm-1; HRMS (APCI) calcd for C25H17Cl2N2O6[M+H]+ 511.0463, found 511.0459.

    2, 5-双(4-甲氧基苯基)-7, 9-二硝基-4a, 5, 6, 10b-四氢- 4H-苯并[f]异色烯-4-酮(3m):黄色固体64.0 mg, 产率85%. m.p. 75~76 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.72 (d, J=2.3 Hz, 1H), 8.30 (d, J=2.3 Hz, 1H), 8.00 (d, J=8.9 Hz, 2H), 7.53 (d, J=8.8 Hz, 2H), 7.01~6.82 (m, 5H), 5.68 (t, J=5.6 Hz, 1H), 4.44~4.31 (m, 1H), 3.85 (d, J=8.3 Hz, 3H), 3.79 (d, J=1.4 Hz, 3H), 3.53~3.32 (m, 3H); 13C NMR (101 MHz, CDCl3) δ: 195.02, 164.04, 159.61, 149.26, 146.06, 142.56, 136.52, 130.93, 130.75, 130.68, 129.83, 128.67, 126.97, 123.60, 120.70, 118.50, 114.04, 113.94, 113.59, 113.55, 78.05, 74.31, 55.59, 55.30, 44.70, 32.28; IR (KBr) v: 1649.9, 1540.5, 1339.8, 1084.1, 754.2 cm-1; HRMS (APCI) calcd for C27H23N2O6 [M+ H]+ 503.1454, found 503.1436.

    5-甲基-7, 9-二硝基-2-苯基甲基-4a, 5, 6, 10b-四氢-4H-苯并[f]异苯并吡喃-4-酮(3n):黄色固体29.7 mg, 产率52%. m.p. 53~54 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 8.70 (d, J=2.2 Hz, 1H), 8.65 (d, J=2.3 Hz, 1H), 7.96 (d, J=8.3 Hz, 2H), 7.58 (d, J=7.5 Hz, 2H), 7.32 (s, 1H), 5.67 (dd, J=7.8, 3.5 Hz, 1H), 4.58 (dd, J=7.9, 5.5 Hz, 1H), 4.02~3.70 (m, 2H), 3.32 (d, J=7.0 Hz, 2H), 1.34. (s, 3H); 13C NMR (101 MHz, DMSO-d6)δ: 196.66, 149.28, 146.19, 137.25, 134.90, 132.28, 130.82, 129.88, 128.92, 128.77, 128.02, 124.62, 118.61, 77.09, 73.90, 44.57, 32.78, 20.31; IR (KBr) v: 1717.6, 1607.4, 1214.9, 1015.6, 786.9, 685.5 cm-1; HRMS (APCI) calcd for C20H17N2O6 [M+ H]+ 381.1086, found 381.1079.

    辅助材料(Supporting Information)化合物3a~3n1H NMR和13C NMR谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.


    1. [1]

      (a) Wang J., Ma H., Zhang X., He L., Wu J., Gao X., Ren J., Li J...Int. J. Physiol., Pathophysiol. Pharmacol. 2015, 7, 105. (b) Gao Y., Hao J., Yan Q., Du F., Ju Y., Hu J...ACS Appl. Mater. Interfaces 2018, 10, 17352. (c) Kattela S., de Lucca E. C..., Jr.; Correia C. R. D...Chem. Eur. J. 2018, 24, 17691. (d) Li J., Li S., Guo J., Li Q., Long J., Ma C., Ding Y., Yan C., Li L., Wu Z., Zhu H., Li K. K., Wen L., Zhang Q., Xue Q., Zhao C., Liu N., Ivanov I., Luo M., Xi R., Long H., Wang P. G., Chen Y...J. Med. Chem. 2018, 61, 4155.

    2. [2]

      (a) Cragg G. M., Grothaus P. G., Newman D. J...Chem. Rev. 2009, 109, 3012. (b) Feng Y., Wang L., Niu S., Li L., Si Y., Liu X., Che Y...J. Nat. Prod. 2012, 75, 1339. (c) Liu L.-L., Xu Y., Han Z., Li Y.-X., Lu L., Lai P.-Y., Zhong J.-L., Guo X.-R., Zhang X.-X., Qian P.-Y...Mar. Drugs 2012, 10, 2571. (d) Moreira R. R. D., Martins G. Z., Pietro R. C. L. R., Sato D. N., Pavan F. R., Leite S. R. A., Vilegas W., Leite C. Q. F...Rev. Bras. Farmacogn. 2013, 23, 268. (e) Nadtochiy S. M., Wang Y. T., Nehrke K., Munger J., Brookes P. S...J. Mol. Cell. Cardiol. 2018, 121, 155. (f) Schmitt F., Kasparkova J., Brabec V., Begemann G., Schobert R., Biersack B...J. Inorg. Biochem. 2018, 184, 69.

    3. [3]

      Nadtochiy S. M., Wang Y. T., Nehrke K., Munger J., Brookes P. S...bioRxiv, Biochem. 2018, 8, 1.

    4. [4]

      Xu L., Wang C., Gao Z., Zhao Y. M...J. Am. Chem. Soc. 2018, 140, 5653. doi: 10.1021/jacs.8b03015

    5. [5]

      (a) Li G., Ding W., Wan F., Li Y...Molecules 2016, 21, 1250. (b) Rishikesan R., Raju R., Manikandaselvi S., Thinagarbabu R., Sivasubramanian A...Pharm. Lett. 2016, 8, 280. (c) Yilmaz A., Crowley R. S., Sherwood A. M., Prisinzano T. E...J. Nat. Prod. 2017, 80, 2094. (d) Jain D., Dhuria R., Sharma T., Bothra T...Int. J. Chem. Stud. 2018, 6, 1. (e) Taha-Salaime L., Davidovich-Rikanati R., Sadeh A., Abu- Nassar J., Marzouk-Kheredin S., Yahyaa Y., Ibdah M., Ghanim M., Lewinsohn E., Inbar M., Aly R...ACS Omega 2019, 4, 2369.

    6. [6]

      Pang S.-J., Min S.-H., Lee H., Cho C.-G. J. Org. Chem. 2003, 68, 10191. doi: 10.1021/jo035354y

    7. [7]

      Fang X., Jiang K., Xing C., Hao L., Chi Y. R...Angew. Chem., Int. Ed. 2011, 50, 1910. doi: 10.1002/anie.201007144

    8. [8]

      Chen J.-H., Chang C., Chang H.-J., Chen K...Org. Biomol. Chem. 2011, 9, 7510. doi: 10.1039/c1ob05966a

    9. [9]

      (张洁, 杜广芬, 顾承志, 代斌, 有机化学, 2017, 37, 914.) (叶梦, 申盼盼, 段文增, 宋淳, 马玉道, 有机化学, 2017, 37, 2919.) (巨磊, 马春梅, 唐蜜, 王妍卉, 虞心红, 马红梅, 有机化学, 2018, 38, 3056.(a) Enders D., Niemeier O., Henseler A... Chem. Rev. 2007, 107, 5606. (b) Nair V., Menon R. S., Biju A. T., Sinu C. R., Paul R. R., Jose A., Sreekumar V...Chem. Soc. Rev. 2011, 40, 5336. (c) Bugaut X., Glorius F...Chem. Soc. Rev. 2012, 41, 3511. (d) Grossmann A., Enders D...Angew. Chem., Int. Ed. 2012, 51, 314. (e) De Sarkar S., Biswas A., Samanta R. C., Studer A...Chem. Eur. J. 2013, 19, 4664. (f) Hopkinson M. N., Richter C., Schedler M., Glorius F...Nature 2014, 510, 485. (g) Flanigan D. M., Romanov-Michailidis F., White N. A., Rovis T...Chem. Rev. 2015, 115, 9307. (h) Candish L., Gillard R. M., Fernando J. E. M., Levens A., Lupton D. W...Isr. J. Chem. 2016, 56, 522. (i) Zhang J., Du G., Gu C., Dai B...Chin. J. Org. Chem. 2017, 37, 914 (in Chinese).(j) Ye M., Shen P., Duan W., Song C., Ma Y...Chin. J. Org. Chem. 2017, 37, 2919 (in Chinese).(k) Wang N., Xu J., Lee J. K...Org. Biomol. Chem. 2018, 16, 6852. (l) Wang Y., Wei D., Zhang W...ChemCatChem 2018, 10, 338. (m) Ju L., Ma C., Tang M., Wang Y., Yu X., Ma H...Chin. J. Org. Chem. 2018, 38, 3056 (in Chinese).

    10. [10]

      杨丽军, 马军安, 化学学报, 2016, 74, 130.Yang L., Ma J.-A...Acta Chim. Sinica 2016, 74, 130 (in Chinese). 

    11. [11]

      Cowen B. J., Miller S. J...Chem. Soc. Rev. 2009, 38, 3102. doi: 10.1039/b816700c

    12. [12]

      (a) Burstein C., Glorius F...Angew. Chem., Int. Ed. 2004, 43, 6205. (b) Zhang C., Hooper J. F., Lupton D. W...ACS Catal. 2017, 7, 2583. (c) Mondal S., Yetra S. R., Mukherjee S., Biju A. T...Acc. Chem. Res. 2019, 52, 425.

    13. [13]

      (a) Kaeobamrung J., Mahatthananchai J., Zheng P., Bode J. W...J. Am. Chem. Soc. 2010, 132, 8810. (b) Zhu Z.-Q., Zheng X.-L., Jiang N.-F., Wan X., Xiao J.-C...Chem. Commun. 2011, 47, 8670. (c) Rong Z.-Q., Jia M.-Q., You S.-L...Org. Lett. 2011, 13, 4080. (d) Mahatthananchai J., Kaeobamrung J., Bode J. W...ACS Catal. 2012, 2, 494. (e) Lu H., Liu J.-Y., Li C.-G., Lin J.-B., Liang Y.-M., Xu P.-F...Chem. Commun. 2015, 51, 4473.

    14. [14]

      Xu J., Jin Z., Chi Y. R...Org. Lett. 2013, 15, 5028. doi: 10.1021/ol402358k

    15. [15]

      Cheng J., Huang Z., Chi Y. R...Angew. Chem., Int. Ed. 2013, 52, 8592. doi: 10.1002/anie.201303247

    16. [16]

      (a) Ryan S. J., Candish L., Lupton D. W...J. Am. Chem. Soc. 2009, 131, 14176. (b) Ryan S. J., Candish L., Lupton D. W...J. Am. Chem. Soc. 2011, 133, 4694. (c) Candish L., Lupton D. W...J. Am. Chem. Soc. 2013, 135, 58.

    17. [17]

      (a) Sun F.-G., Sun L.-H., Ye S...Adv. Synth. Catal. 2011, 353, 3134. (b) Yao C., Wang D., Lu J., Li T., Jiao W., Yu C...Chem. Eur. J. 2012, 18, 1914. (c) Yetra S. R., Bhunia A., Patra A., Mane M. V., Vanka K., Biju A. T...Adv. Synth. Catal. 2013, 355, 1089. (d) Mondal S., Yetra S. R., Patra A., Kunte S. S., Gonnade R. G., Biju A. T...Chem. Commun. 2014, 50, 14539. (e) Xie Y., Que Y., Li T., Zhu L., Yu C., Yao C...Org. Biomol. Chem. 2015, 13, 1829. (f) Qiao Y., Wei D., Chang J...J. Org. Chem. 2015, 80, 8619. (g) Wang Y., Wu B., Zheng L., Wei D., Tang M...Org. Chem. Front. 2016, 3, 190.

    18. [18]

      (a) Yang Y.-J., Zhang H.-R., Zhu S.-Y., Zhu P., Hui X.-P...Org. Lett. 2014, 16, 5048. (b) Zhang H.-R., Dong Z.-W., Yang Y.-J., Wang P.-L., Hui X.-P...Org. Lett. 2013, 15, 4750.

    19. [19]

      Wang J., Li Y., Sun J., Wang H., Jin Z., Chi Y. R...ACS Catal. 2018, 8, 9859. doi: 10.1021/acscatal.8b02651

    20. [20]

      Lu H., Zhang J.-L., Liu J.-Y., Li H.-Y., Xu P.-F. ACS Catal. 2017, 7, 7797. doi: 10.1021/acscatal.7b02651

  • 图 1  含有萘并吡喃酮的天然产物或生物活性分子

    Figure 1  Naphthopyranone-based natural products or biologically relevant compounds

    图式 1  官能化萘并吡喃酮的合成

    Scheme 1  Syntheses of functionalized naphthopyranones

    图式 2  NHC的串联催化反应

    Scheme 2  NHC-catalyzed cascade reaction

    图式 3  1 mmol规模合成

    Scheme 3  Reaction on 1 mmol scale

    图 2  可能的反应机理

    Figure 2  Possible mechanism

    表 1  合成多官能化萘并吡喃酮的反应条件优化a

    Table 1.  Reaction optimization for the synthesis of multi- functionalized naphthopyranone

    Entry Cat. Solvent Base Yieldb/% dr c/%
    1 A DCE K2CO3 65 56:44
    2 B DCE K2CO3 37 53:47
    3 C1 DCE K2CO3 N.D
    4 C2 DCE K2CO3 N.D
    5 C3 DCE K2CO3 N.D
    6 A DCE Cs2CO3 54 51:49
    7 A DCE NaOAc 46 55:45
    8 A DCE t-BuOK 43 53:47
    9 A DCE DABCO Trace
    10 A THF K2CO3 Trace
    11 A ACN K2CO3 36 65:35
    12 A Toluene K2CO3 Trace
    13 A DCM K2CO3 76 72:28
    14d A DCM K2CO3 82 69:31
    15e A DCM K2CO3 87 59:41
    16f A DCM K2CO3 94 80:20
    a All reactions were performed in a 10 mL Schleck tube on a 0.15 mmol scale with 1a(46.8 mg, 0.15 mmol, 1.0 equiv.), 2a (38.0 mg, 0.18 mmol, 1.2 equiv.), cat. (0.03 mmol, 20 mol%) and base (0.30 mmol, 2.0 equiv.) in an anhydrous solvent (2.0 mL) at 25 ℃ under N2. b Isolated yields based on 1a. DABCO=triethylenediamine; N.D.=not determined. c Diastereomeric ratio was determined by 1H NMR analysis of the crude product. d Reaction was performed at 15 ℃. e Reaction was performed at 5 ℃. f Reaction was performed at 0 ℃.
    下载: 导出CSV

    表 2  NHC催化下多取代官能化萘并吡喃酮的合成a

    Table 2.  NHC-catalyzed syntheses of multi-functionalized naphthopyranones

    Entry R1 R2 Product Yieldb/% drc/%
    1 Ph Ph 3a 94 80:20
    2 Ph 4-ClC6H4 3b 92 81:19
    3 Ph 4-FC6H4 3c 87 80:20
    4 Ph 2-BrC6H4 3d 75 90:10
    5 Ph 3-ClC6H4 3e 68 85:15
    6 Ph 3-MeC6H4 3f 85 78:22
    7 Ph 4-MeOC6H4 3g 87 66:34
    8 4-ClC6H4 Ph 3h 89 93:7
    9 4-BrC6H4 Ph 3i 91 91:9
    10 4-MeOC6H4 Ph 3j 86 81:19
    11 3-MeC6H4 4-MeC6H4 3k 78 75:25
    12 4-ClC6H4 4-ClC6H4 3l 70 95:5
    13 4-MeOC6H4 4-MeOC6H4 3m 85 76:24
    14 Ph Me 3n 52 73:27
    a All reactions were performed in a 10 mL Schleck tube on a 0.15 mmol scale with 1(0.15 mmol, 1.0 equiv.), 2 (0.18 mmol, 1.2 equiv.), A (10.2 mg, 0.03 mmol, 20 mol%) and K2CO3 (41.4 mg, 0.30 mmol, 2.0 equiv.) in DCM (2.0 mL) at 0 ℃ under N2. b Isolated yields. c Diastereomeric ratio was determined by 1H NMR analysis of the crude product.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  788
  • HTML全文浏览量:  16
文章相关
  • 发布日期:  2020-02-25
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-09-19
  • 网络出版日期:  2019-02-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章