Citation: Jiang Hongji, He Xu, Li Xiong. Synthesis and Characterization of Blue Light Emitting Polymer Based on 2, 4, 6-Triphenyl-1, 3, 5-triazine and 1-(4-Hexyloxy)-benzene Functionalized Fluorene Units[J]. Chinese Journal of Organic Chemistry, ;2020, 40(3): 763-773. doi: 10.6023/cjoc201905030 shu

Synthesis and Characterization of Blue Light Emitting Polymer Based on 2, 4, 6-Triphenyl-1, 3, 5-triazine and 1-(4-Hexyloxy)-benzene Functionalized Fluorene Units

  • Corresponding author: Jiang Hongji, iamhjjiang@njupt.edu.cn
  • Received Date: 14 May 2019
    Revised Date: 16 August 2019
    Available Online: 21 November 2019

    Fund Project: the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPD, YX030003Project supported by the National Natural Science Foundation of China (No. 21574068), the Major Research Program from the State Ministry of Science and Technology (No. 2012CB933301) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX030003)the Major Research Program from the State Ministry of Science and Technology No. 2012CB933301Project supported by the National Natural Science Foundation of China No. 21574068

Figures(9)

  • Polymer 3 based on 1-(4-hexyloxy)-benzene and 2, 4, 6-triphenyl-1, 3, 5-triazine functionalized fluorene units was synthesized and characterized, whose optoelectronic properties were further compared with those of poly(9, 9-dihexyl-fluorene) (1) and poly(9, 9-di(1-(4-hexyloxy)-phenyl)-fluorene) (2). The 5% weight loss temperatures of polymers 1, 2 and 3 thin solid powders are 274, 318 and 401℃, and their glass transition temperatures in the same state are 91, 120 and 139℃, respectively. The maximum absorption and photoluminescent emission peaks of polymers 1, 2 and 3 in toluene solution are 380 and 435 nm, and their optical band gaps in toluene solution are 2.95, 2.95 and 2.91 eV. The triplet energy levels of polymers 1, 2 and 3 are 2.82, 2.81 and 2.97 eV, while their singlet energy levels are 3.14, 3.13 and 3.12 eV, which makes the singlet-triplet energy splitting gaps for polymers 1, 2 and 3 to be 0.32, 0.32 and 0.15 eV. The highest occupied molecular orbital energy levels of polymers 1, 2 and 3 are -5.72, -5.95 and -5.96 eV and the lowest unoccupied molecular orbital energy levels are -2.70, -2.39 and -2.34 eV. The introduction of 4-hexoxybenzene widened the energy band gaps of the polymers, while the electron deficient 2, 4, 6-triphenyl-1, 3, 5-triazine made the single-triplet energy splitting gaps of the polymers successively decreased, but it did not endow polymer 3 with thermally activated delayed fluorescence characteristic. With the introduction of rigid and electron deficient 2, 4, 6-triphenyl-1, 3, 5-triazine into the 9-carbon of the fluorene units in the polymer, the thermal stability, color purity and photostability of blue light emitting solid were improved in the turn of polymers 1, 2 and 3, which were further validated by the stable electroluminescent spectra of polymer 3. The wide-angle X-ray diffraction results of the polymers 1, 2 and 3 powders show that all polymers have excellent amorphous properties in nature. The phase diversity of polymer 3 powder locates between those of polymers 1 and 2, and the alkoxyl phenyl substituted group on the polymer 2 side chain is helpful to improve the diversity of ordered morphology in solid powder. The random copolymer 3 exhibits much better photoelectric properties than those of polymers 1 and 2.
  • 加载中
    1. [1]

      Baldo M. A., O'Brien D. F., You Y. J., Shoustikov A., Forrest S. R.Nature, 1998, 395:151.  doi: 10.1038/25954

    2. [2]

      Reineke S., Lindner F., Schwartz G., Seidler N., Walzer K., Lüssem B., Leo K.Nature, 2009, 459:116.
       

    3. [3]

      Adachi C., Baldo M. A., Thompson M. E., Forrest S. R.J. Appl. Phys., 2001, 90:5048.  doi: 10.1063/1.1409582

    4. [4]

      Kohler A., Wilson J. S., Friend R. H.Adv. Eng. Mater., 2002, 4:453.  doi: 10.1002/1527-2648(20020717)4:7<453::AID-ADEM453>3.0.CO;2-G

    5. [5]

      Tao Y. T., Yang C. L., Qin J. G.Chem. Soc. Rev., 2011, 40:2943.  doi: 10.1039/c0cs00160k

    6. [6]

      Gong S., Chang Y. L., Wu K., White R., Lu Z. H., Song D., Yang C.Chem. Mater., 2014, 26:1463.  doi: 10.1021/cm4037555

    7. [7]

      Shin H., Lee J., Moon C., Huh J., Sim B., Kim J.Adv. Mater., 2016, 28:4920.  doi: 10.1002/adma.201506065

    8. [8]

      Hofbeck T., Monkowius U., Yersin H.J. Am. Chem. Soc., 2015, 137:399.  doi: 10.1021/ja5109672

    9. [9]

      Lee J., Chen H. F., Batagoda T., Coburn C., Djurovich P. I., Thompson M. E., Forrest S. R.Nat. Mater., 2015, 15:92.
       

    10. [10]

      Yu W. L., Meng H., Pei J., Huang W.J. Am. Chem. Soc., 1998, 120:11808.  doi: 10.1021/ja982561k

    11. [11]

      Zhao L., Liu Y., Wang S., Tao Y., Wang F., Zhang X., Huang W.Chin. J. Polym. Sci., 2017, 35:490.  doi: 10.1007/s10118-017-1881-1

    12. [12]

      Zhu M. R., Yang C. L.Chem. Soc. Rev., 2013, 12:4963.

    13. [13]

      Sheats J. R., Antoniadis H., Hueschen M., Leonard W., Miller J., Moon R., Roitman D., Stocking A.Science, 1996, 273:884.  doi: 10.1126/science.273.5277.884

    14. [14]

      Jiang H. J., Wan J. H., Huang W.Sci. China, Chem., 2008, 51:497.  doi: 10.1007/s11426-008-0053-0

    15. [15]

      Liu C., Li Y. H., Li Y. F., Yang C. L., Wu H. B., Qin J. G., Cao Y.Chem. Mater., 2013, 25:3320.  doi: 10.1021/cm401640v

    16. [16]

      Umberto G., Chiara B., Francesco G., Barbara V., Salvatore B., Mariacecilia P.J. Mater. Chem. C, 2013, 34:5322.

    17. [17]

      Saragi T. P. I., Spehr T., Siebert A., Fuhrmann-Lieker T., Salbeck J.Chem. Rev., 2007, 107:1011.  doi: 10.1021/cr0501341

    18. [18]

      Yu W. L., Pei J., Huang W., Heeger A. J.Adv. Mater., 2000, 12:828.  doi: 10.1002/(SICI)1521-4095(200006)12:11<828::AID-ADMA828>3.0.CO;2-H

    19. [19]

      Jiang H. J., Sun J.Acta Polym. Sin., 2015, 46:97(in Chinese).
       

    20. [20]

      McFarlane S. L., Coumont L. S., Piercey D. G., McDonald R., Veinot J. G. C.Macromolecules, 2008, 41:7780.  doi: 10.1021/ma801123d

    21. [21]

      Jin G. R., Lian S. S., Pan Y. J., Wu Z. L., Hu D. H., Mo Y. Q., Liu L. L., Xie Z. Q., Ma Y. G.Polym. Chem., 2019, 10:494.  doi: 10.1039/C8PY01480A

    22. [22]

      Santos M. J., Cook J. H., Al-Attar H. A., Monkman A. P., Bryce M. R.J. Mater. Chem. C, 2015, 3:2479.  doi: 10.1039/C4TC02766C

    23. [23]

      Ha H., Kim H.Appl. Phys. Lett., 2008, 93:033309.  doi: 10.1063/1.2960998

    24. [24]

      Ren S. J., Zeng D. L., Zhong H. L., Wang Y. C., Qian S. X., Fang Q.J. Phys. Chem. B, 2010, 114:10374.  doi: 10.1021/jp104710y

    25. [25]

      Jiang H. J.Macromol. Rapid. Commun., 2010, 31:2007.  doi: 10.1002/marc.201000040

    26. [26]

      Zhong H. L., Lai H., Fang Q.J. Phys. Chem. C, 2011, 115:2423.
       

    27. [27]

      Zhong H. L., Xu E. J., Zeng D. L., Du J. P., Sun J., Ren S. J., Jiang B., Fang Q.Org. Lett., 2008, 10:709.  doi: 10.1021/ol702698r

    28. [28]

      Zeng W., Lai H., Lee W., Jiao M., Shiu Y., Zhong C., Gong S., Zhou T., Xie G., Sarma M., Wong K., Wu C., Yang C.Adv. Mater., 2018, 30:1704961.  doi: 10.1002/adma.201704961

    29. [29]

      Hirata S., Sakai Y., Masui K., Tanaka H., Lee S. Y., Nomura H., Nakamura N., Yasumatsu M., Nakanotani H., Zhang Q., Shizu K., Miyazaki H., Adachi C.Nat. Mater., 2015, 14:330.  doi: 10.1038/nmat4154

    30. [30]

      Hu J. Y., Pu Y. J., Satoh F., Kawata S., Katagiri H., Sasabe H., Kido J.Adv. Funct. Mater., 2013, 24:2064.
       

    31. [31]

      Huang M., Li Y., Wu K., Luo J., Xie G., Li L., Yang C.Dyes Pigm., 2018. 153, 92.  doi: 10.1016/j.dyepig.2018.02.018

    32. [32]

      Chitnis S. S., Burford N.Dalton. Trans., 2015, 44:17.  doi: 10.1039/C4DT02789B

    33. [33]

      Grisorio R., Allegretta G., Mastrorilli P., Surana G. P.Macromolecules, 2011, 44:7977.  doi: 10.1021/ma2015003

    34. [34]

      Cao X., Yang W. D., Liu C., Wei F. L., Wu K., Sun W., Song J., Xie L. H., Huang W.Org. Lett., 2013, 15:3102.  doi: 10.1021/ol4013052

    35. [35]

      Tanaka H., Shizu K., Miyazaki H., Adachi C.Chem. Commun., 2012, 48:11392.  doi: 10.1039/c2cc36237f

    36. [36]

      Jiang H. J., Zhang Q. W., He X., Zhang X. L., Zhang X. W.Chin. J. Polym. Sci., 2017, 35:611.  doi: 10.1007/s10118-017-1926-5

    37. [37]

      Yeo H., Tanaka K., Chujo Y.J. Polym. Sci., Part A, 2012, 50:4433.  doi: 10.1002/pola.26249

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    8. [8]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(10)
  • Abstract views(1459)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return