Citation: Luo Feihua. Progress in Transition Metal Catalyzed C-H Functionalization Directed by Carboxyl Group[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3084-3104. doi: 10.6023/cjoc201905027 shu

Progress in Transition Metal Catalyzed C-H Functionalization Directed by Carboxyl Group

  • Corresponding author: Luo Feihua, 20180011@yznu.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 12 June 2019
    Available Online: 9 November 2019

    Fund Project: the Scientific and Technological Research Program of Fuling District Commission 2018BBA3039the Introduction of Yangtze Normal University Scientific Research Grants Project 011160011the Scientific and Technological Research Program of Fuling District Commission FLKJProject supported by the Scientific and Technological Research Program of Fuling District Commission (No. FLKJ, 2018BBA3039), and the Introduction of Yangtze Normal University Scientific Research Grants Project (No. 011160011)

Figures(29)

  • The C-H activation assisted by directing groups is an important measure for selective C-H activation at specific positions, and it is also one of the hot spots in the research field of organic chemistry. As an efficient directing group, carboxylic acid has the advantages of low cost, low toxicity, easy modification and using as traceless directing groups. Recent development on C-H functionalization directed by carboxyl group according to different coupling modes is summarized, and the representative reaction mechanism is briefly described. Existing problems with a brief outlook in this field are also presented.
  • 加载中
    1. [1]

      (a) Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese).
      (张博, 管晗曦, 刘斌, 史炳锋, 有机化学, 2014, 34, 1487.)
      (b) Yuan, Y.; Song, S.; Jiao, N. Acta Chim. Sinica 2015, 73, 1231 (in Chinese).
      (袁逸之, 宋颂, 焦宁, 化学学报, 2015, 73, 1231.)
      (c) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235 (in Chinese).
      (赵金钵, 张前, 化学学报, 2015, 73, 1235.)
      (d) Ding, H.; Li, J.; Guo, Q.; Xiao, Y. Chin. J. Org. Chem. 2017, 37, 3112 (in Chinese).
      (丁怀伟, 李娟, 郭庆辉, 肖琰, 有机化学, 2017, 37, 3112.)
      (e) Cheng, H.; Lin, J.; Zhang, Y.; Chen, B.; Wang, M.; Cheng, L.; Ma, J. Chin. J. Org. Chem. 2019, 39, 318 (in Chinese).
      (程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽, 有机化学学, 2019, 39, 318.)

    2. [2]

      (a) Zhang, F.; Spring, D. Chem. Soc. Rev. 2014, 43, 6906.
      (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
      (c) Yu, J.; Ding, K. Acta Chim. Sinica 2015, 73, 1223 (in Chinese).
      (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.)

    3. [3]

      (a) Drapeau, M.; Gooßen, L. Chem.-Eur. J. 2016, 22, 18654.
      (b) Font, M.; Quibell, J.; Perry, G.; Larrosa, L. Chem. Commun. 2017, 53, 5584.

    4. [4]

      Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.  doi: 10.1021/jo980584b

    5. [5]

      Suresh, R. R.; Swamy, K. C. K. J. Org. Chem. 2012, 77, 6959.  doi: 10.1021/jo301149s

    6. [6]

      Nandi, D.; Ghosh, D.; Chen, S.; Kuo, B.; Wang, N.; Lee, H. J. Org. Chem. 2013, 78, 3445.  doi: 10.1021/jo400174w

    7. [7]

      Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930.  doi: 10.1021/ol2034614

    8. [8]

      Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030.  doi: 10.1039/c2cc16916a

    9. [9]

      Warratz, S.; Kornhaaß, C.; Cajaraville, A.; Niepötter, B.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 5513.  doi: 10.1002/anie.201500600

    10. [10]

      Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. Angew. Chem., Int. Ed. 2016, 55, 6933.  doi: 10.1002/anie.201600894

    11. [11]

      Liu, Y.; Yang, Y.; Shi, Y.; Wang, X.; Zhang, L.; Cheng, Y.; You, J. Organometallics 2016, 35, 1350.  doi: 10.1021/acs.organomet.6b00107

    12. [12]

      Yu, C.; Zhang, J.; Zhong, G. Chem. Commun. 2017, 53, 9902.  doi: 10.1039/C7CC04973K

    13. [13]

      Han, W.; F.; Pu, F.; Fan, J.; Liu, Z.; Shi, X. Adv. Synth. Catal. 2017, 359, 3520.  doi: 10.1002/adsc.201700603

    14. [14]

      Trita, A.; Biafora, A.; Drapeau, M.; Weber, P.; Gooßen, L. Angew. Chem., Int. Ed. 2018, 57, 14580.  doi: 10.1002/anie.201712520

    15. [15]

      Jambu, S.; Tamizmani, M.; Jeganmohan, M. Org. Lett. 2018, 20, 1982.  doi: 10.1021/acs.orglett.8b00533

    16. [16]

      (a) Hu, X.; Hu, Z.; Zhang, G.; Sivendran, N.; Gooßen, L. Org. Lett. 2018, 20, 4337.
      (b) Hu, X.; Hu, Z.; Trita, A.; Zhang, G.; Gooßen, L. Chem. Sci. 2018, 9, 5289.

    17. [17]

      Dana, S.; Mandal, A.; Sahoo, H.; Mallik, S.; Grandhi, G.; Baidya, M. Org. Lett. 2018, 20, 716.  doi: 10.1021/acs.orglett.7b03852

    18. [18]

      Giri, R.; Maugel, N.; Li, J.; Wang, D.; Breazzano, S.; Saunders, L.; Yu, J. J. Am. Chem. Soc. 2007, 129, 3510.  doi: 10.1021/ja0701614

    19. [19]

      Chiong, H.; Pham, Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.  doi: 10.1021/ja071845e

    20. [20]

      Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem 2013, 5, 2839.  doi: 10.1002/cctc.201300470

    21. [21]

      Zhu, C.; Zhang, Y.; Kan, J.; Zhao, H.; Su, W. Org. Lett. 2015, 17, 3418.  doi: 10.1021/acs.orglett.5b01398

    22. [22]

      Huang, L.; Hackenberger, H.; Gooßen, L. Angew. Chem., Int. Ed. 2015, 54, 12607.  doi: 10.1002/anie.201505769

    23. [23]

      Simonetti, M.; Cannas, D.; Panigrahi, A.; Kujawa, S.; Kryjewski, M.; Xie, P.; Larrosa, L. Chem.-Eur. J. 2017, 23, 549.  doi: 10.1002/chem.201605068

    24. [24]

      Gong, H.; Zeng, H.; Zhou, F.; Li, C. Angew. Chem., Int. Ed. 2015, 54, 5718.  doi: 10.1002/anie.201500220

    25. [25]

      Qin, X.; Li, X.; Huang, Q.; Liu, H.; Wu, D.; Guo, Q.; Lan, J.; Wang, R.; You, J. Angew. Chem., Int. Ed. 2015, 54, 7167.  doi: 10.1002/anie.201501982

    26. [26]

      Sun, D.; Li, B.; Lan, J.; Huang, Q.; You, J. Chem. Commun. 2016, 52, 3635.  doi: 10.1039/C6CC00103C

    27. [27]

      Tan, G.; You, Q.; Lan, J.; You, J. Angew. Chem., Int. Ed. 2018, 57, 6309.  doi: 10.1002/anie.201802539

    28. [28]

      Mei, R.; Zhang, S.; Ackermann, L. Org. Lett. 2017, 19, 3171.  doi: 10.1021/acs.orglett.7b01294

    29. [29]

      Zhang, Y. H.; Shi, B. F.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 6097.  doi: 10.1002/anie.200902262

    30. [30]

      Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.  doi: 10.1021/ol201563r

    31. [31]

      Shi, X.; Li, C. Adv. Synth. Catal. 2012, 354, 2933.  doi: 10.1002/adsc.201200690

    32. [32]

      Boun, P.; Villa, G.; Dang, D.; Richardson, P.; Su, S.; Yu, J. J. Am. Chem. Soc. 2013, 135, 17508.  doi: 10.1021/ja409014v

    33. [33]

      Cheng, G.; Li, T.; Yu, J. J. Am. Chem. Soc. 2015, 137, 10950.  doi: 10.1021/jacs.5b07507

    34. [34]

      Han, W.; Pu, F.; Li, C.; Liu, Z.; Fan, J.; Shi, X. Adv. Synth. Catal. 2018, 360, 1358.  doi: 10.1002/adsc.201701468

    35. [35]

      Kumar, G.; Chand, T.; Singh, D.; Kapur, M. Org. Lett. 2018, 20, 4934.  doi: 10.1021/acs.orglett.8b02064

    36. [36]

      Giri, R.; Yu, J. J. Am. Chem. Soc. 2008, 130, 14082.  doi: 10.1021/ja8063827

    37. [37]

      Shi, X.; Renzetti, A.; Kundu, S.; Li, C. Adv. Synth. Catal. 2013, 356, 723.

    38. [38]

      Manone, P.; Danoun, G.; Gooßen, L. Angew. Chem. Int. Ed. 2013, 52, 6704.  doi: 10.1002/anie.201301328

    39. [39]

      Mao, J.; Ge, H. Org. Lett. 2013, 15, 2930.  doi: 10.1021/ol400919u

    40. [40]

      Arzoumanidis, G.; Rauch, F. J. Org. Chem. 1981, 46, 3930.  doi: 10.1021/jo00332a042

    41. [41]

      Ng, K.; Ng, F.; Yu, W. Chem. Commun. 2012, 48, 11680.  doi: 10.1039/c2cc36502b

    42. [42]

      Ng, F.; Zhou, Z.; Yu, W. Chem.-Eur. J. 2014, 20, 4474.  doi: 10.1002/chem.201304855

    43. [43]

      Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.  doi: 10.1002/chem.201500331

    44. [44]

      Sen, A.; Kao, L. C. J. Chem. Soc., Chem. Commun. 1991, 1242.

    45. [45]

      Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123, 8149.  doi: 10.1021/ja016280f

    46. [46]

      Lee, J. M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375.  doi: 10.1016/j.tetlet.2005.12.104

    47. [47]

      Novák, P.; Correa, A.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.  doi: 10.1002/anie.201105894

    48. [48]

      Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032.  doi: 10.1021/ja063096r

    49. [49]

      Takenaka, K.; Akita, M.; Tanigaki, Y.; Takizawa, S.; Sasai, H. Org. Lett. 2011, 13, 3506.  doi: 10.1021/ol201314m

    50. [50]

      Taktak, S.; Flook, M.; Foxman, B.; Que, L.; Rybak-Akimova, E. Chem. Commun. 2005, 42, 5301.

    51. [51]

      Zhang, Y.; Yu, J. J. Am. Chem. Soc. 2009, 131, 14654.  doi: 10.1021/ja907198n

    52. [52]

      Cheng, X. F.; Li, Y.; Su, Y. M.; Yin, F.; Wang, J. Y.; Sheng, J.; Vora, H. U.; Wang, X. S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 1236.  doi: 10.1021/ja311259x

    53. [53]

      Yang, M. Y.; Jiang, X. Y.; Shi, W. J.; Zhu, Q. L.; Shi, Z. J. Org. Lett. 2013, 15, 690.  doi: 10.1021/ol303569b

    54. [54]

      Li, Y.; Ding, Y. J.; Wang, J. Y.; Su, Y. M.; Wang, X. S. Org. Lett. 2013, 15, 2574.  doi: 10.1021/ol400877q

    55. [55]

      Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135, 9350.  doi: 10.1021/ja4047894

    56. [56]

      Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G.; Baidya, M. Org. Lett. 2017, 19, 2430.  doi: 10.1021/acs.orglett.7b00996

    57. [57]

      Mei, T.; Giri, R.; Maugel, N.; Yu, J. Angew. Chem., Int. Ed. 2008, 47, 5215.  doi: 10.1002/anie.200705613

    58. [58]

      Mei, T.; Wang, D.; Yu, J. Org. Lett. 2010, 12, 3140.  doi: 10.1021/ol1010483

    59. [59]

      Erbing, E.; Sanz-Marco, A.; Vázquez-Romero, A.; Malmberg, J.; Johansson, M.; Gómez-Bengoa, E.; Martín-Matute, B. ACS Catal. 2018, 8, 920.  doi: 10.1021/acscatal.7b02987

    60. [60]

      Ma, S.; Villa, G.; Thuy-Boun, P.; Homs, A.; Yu, J. Angew. Chem., Int. Ed. 2014, 53, 734.  doi: 10.1002/anie.201305388

    61. [61]

      Cornella, J.; Righi, M.; Larrosa, I. Angew. Chem., Int. Ed. 2011, 50, 9429.  doi: 10.1002/anie.201103720

    62. [62]

      Luo, J.; Preciado, S.; Larrosa, I. J. Am. Chem. Soc. 2014, 136, 4109.  doi: 10.1021/ja500457s

    63. [63]

      Font, M.; Spencer, A.; Larrosa, I. Chem. Sci. 2018, 9, 7133.  doi: 10.1039/C8SC02417K

    64. [64]

      Johnston, A.; Ling, K.; Sale, D.; Lebrasseur, N.; Larrosa, I. Org. Lett. 2016, 18, 6094.  doi: 10.1021/acs.orglett.6b03085

    65. [65]

      Zhang, U.; Zhao, H.; Zhang, M., Su, W. Angew. Chem., Int. Ed. 2015, 54, 3817.  doi: 10.1002/anie.201411701

    66. [66]

      Qin, X.; Sun, D.; You, Q.; Cheng, Y.; Lan, J.; You, J. Org. Lett. 2015, 17, 1762.  doi: 10.1021/acs.orglett.5b00532

    67. [67]

      Pu, F.; Zhang, L.; Liu, Z.; Shi, X. Adv. Synth. Catal. 2018, 360, 2644.  doi: 10.1002/adsc.201800333

    68. [68]

      Wang, Z.; Yang, M.; Yang, Y. Org. Lett. 2018, 20, 3001.  doi: 10.1021/acs.orglett.8b01033

    69. [69]

      Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159.  doi: 10.1021/ol8000602

    70. [70]

      Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.  doi: 10.1021/jo200509m

    71. [71]

      Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.  doi: 10.1021/ja509557j

    72. [72]

      Kumar, N.; Bechtoldt, A.; Raghuvanshi, K.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 6929.  doi: 10.1002/anie.201600490

    73. [73]

      Zhang, J.; Shrestha, R.; Hartwig, J.; Zhao, P. Nat. Chem. 2016, 8, 1144.  doi: 10.1038/nchem.2602

    74. [74]

      Kim, K.; Vasu, D.; Im, H.; Hong, S. Angew. Chem. Int. Ed. 2016, 55, 8652.  doi: 10.1002/anie.201603661

    75. [75]

      Bhunia, A.; Studer, A. ACS Catal. 2018, 8, 1213.  doi: 10.1021/acscatal.8b00083

    76. [76]

      Kumar, N.; Rogge, T.; Yetra, S.; Bechtoldt, A.; Clot, E.; Ackermann, L. Chem.-Eur. J. 2017, 23, 17449.  doi: 10.1002/chem.201703680

    77. [77]

      Shi, X.; Liu, K.; Fan, J.; Dong, X.; Wei, J.; Li, C. Chem.-Eur. J. 2015, 21, 1900.  doi: 10.1002/chem.201406031

    78. [78]

      Tulichala, R.; Shankar, M.; Swamy, K. J. Org. Chem. 2018, 83, 4375.  doi: 10.1021/acs.joc.8b00042

    79. [79]

      Bhadra, S.; Dzik, W.; Gooßen, L. Angew. Chem. Int. Ed. 2013, 52, 2959.  doi: 10.1002/anie.201208755

    80. [80]

      Fu, Z.; Jiang, Y.; Wang, S.; Song, Y.; Guo, S.; Cai, H. Org. Lett. 2019, 21, 3003.  doi: 10.1021/acs.orglett.9b00460

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(63)
  • Abstract views(2488)
  • HTML views(581)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return