Citation: Zhou Qiwen, Feng Xiangqing, Yang Jing, Du Haifeng. Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2188-2195. doi: 10.6023/cjoc201904079 shu

Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane

  • Corresponding author: Yang Jing, yangji@mail.buct.edu.cn Du Haifeng, haifengdu@iccas.ac.cn
  • Received Date: 30 April 2019
    Revised Date: 6 June 2019
    Available Online: 12 August 2019

    Fund Project: the National Natural Science Foundation of China 21825108the National Natural Science Foundation of China 91856103Project supported by the National Natural Science Foundation of China (Nos. 21825108, 91856103)

Figures(2)

  • The asymmetric transfer hydrogenation represents one important class of reactions for the synthesis of optically active compounds. A chiral ammonia borane was generated in situ from an H2 release reaction between chiral phosphoric acid and ammonia borane, which could be regenerated by the assistance of water after the hydrogen transfer process and made this reaction catalytic. With this chiral ammonia borane, asymmetric transfer hydrogenations of β-enamine cyanides were realized to afford the desired products in 48%~98% yields with 61%~95% ee.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
      (b) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
      (c) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
      (d) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
      (e) Zhang, Z.; Butt, N. A.; Zhang, W. Chem. Rev. 2016, 116, 14769.

    2. [2]

      Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1.  doi: 10.1002/jlac.18822150102

    3. [3]

      Mumm, O.; Diederichsen, J. Justus Liebigs Ann. Chem. 1839, 538, 195.

    4. [4]

      Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed., W. H. Freeman and Company, New York, 2002.

    5. [5]

      (a) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.
      (b) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.
      (c) McSkimming, A.; Colbran, S. B. Chem. Soc. Rev. 2013, 42, 5439.
      (d) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem. 2017, 15, 2307.

    6. [6]

      (a) Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1955, 77, 6084.
      (b) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613.
      (c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.

    7. [7]

      (a) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.
      (b) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116.
      (c) Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578.
      (d) Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.

    8. [8]

      Yang, X.; Zhao, L.; Fox, T.; Wang, Z.-X.; Berke, H. Angew. Chem., Int. Ed. 2010, 49, 2058.  doi: 10.1002/anie.200906302

    9. [9]

      Yang, X.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053.  doi: 10.1039/c0cc03163a

    10. [10]

      Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852.  doi: 10.1039/C1OB06381B

    11. [11]

      Yang, X.; Fox, T.; Berke, H. Tetrahedron 2011, 67, 7121.  doi: 10.1016/j.tet.2011.06.104

    12. [12]

      Xu, W.; Fan, H.; Wu, G.; Chen, P. New J. Chem. 2012, 36, 1496.  doi: 10.1039/c2nj40227k

    13. [13]

      Winner, L.; Ewing, W. C.; Geetharani, K.; Dellermann, T.; Jouppi, B.; Kupfer, T.; Braunschweig, H. Angew. Chem., Int. Ed. 2018, 57, 12275.  doi: 10.1002/anie.201807435

    14. [14]

      For selected examples, for the metal organic catalysts see: (a) Chong, C. C.; Hirao, H.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 3342.
      (b) Ding, F.; Zhang, Y.; Jiang, Y.; Bao, R. L.; Lin, K.; Shi, L. Chem. Commun. 2017, 53, 9262.
      (c) Zhou, Q.; Zhang, L.; Yang, J.; Du, H. Org. Lett. 2016, 18, 5189.

    15. [15]

      For selected examples, for the metal catalysts see: (a) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138, 8588.
      (b) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem., Int. Ed. 2016, 55, 1463.
      (c) Das, M.; Kaicharla, T.; Teichert, J. F. Org. Lett. 2018, 20, 4926.
      (d) Ménard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796.

    16. [16]

      For selected examples, for the nanoparticles see:
      (a) Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I. N.; Stratakis, M. Adv. Synth. Catal. 2013, 355, 907.
      (b) Metin, Ö.; Mendoza-Garcia, A.; Dalmızrak, D.; Gültekin, M. S.; Sun, S. Catal. Sci. Technol. 2016, 6, 6137.
      (c) Lara, P.; Philippot, K.; Suárez, A. ChemCatChem 2019, 11, 766.

    17. [17]

      Allwood, B. L.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1984, 1461.

    18. [18]

      Li, S.; Li, G.; Meng, W.; Du, H. J. Am. Chem. Soc. 2016, 138, 12956.  doi: 10.1021/jacs.6b07245

    19. [19]

      Li, S.; Meng, W.; Du, H. Org. Lett. 2017, 19, 2604.  doi: 10.1021/acs.orglett.7b00935

    20. [20]

      Zhao, W.; Feng, X.; Yang, J.; Du, H. Tetrahedron Lett. 2019, 60, 1193.  doi: 10.1016/j.tetlet.2019.03.060

    21. [21]

      Zhou, Q.; Meng, W.; Yang, J.; Du, H. Angew. Chem., Int. Ed. 2018, 57, 12111.  doi: 10.1002/anie.201806877

    22. [22]

      Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Rev. 2011, 111, 1713.  doi: 10.1021/cr100218m

    23. [23]

      Xie, J. H.; Zhu, S. F.; Zhou, Q. L. Chem. Soc. Rev. 2012, 41, 4126.  doi: 10.1039/c2cs35007f

    24. [24]

      Ye, J.; Wang, C.; Chen, L.; Wu, X.; Zhou, L.; Sun, J. Adv. Synth. Catal. 2016, 358, 1042.  doi: 10.1002/adsc.201501061

    25. [25]

      Malkov, A. V.; Stončius, S.; Vrankova, K.; Arndt, M.; Kočovský P. Chem.-Eur. J. 2008, 14, 8082.  doi: 10.1002/chem.200801244

    26. [26]

      Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.  doi: 10.1021/ol900576a

    27. [27]

      Sun, P.; Zhang, Y. Synth. Commun. 1997, 27, 3175.  doi: 10.1080/00397919708004176

    28. [28]

      Leon, M. A.; Liu, X.; Phan, J. H.; Clift, M. D. Eur. J. Org. Chem. 2016, 4508.

    29. [29]

      Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Adv. Synth. Catal. 2018, 360, 4236.  doi: 10.1002/adsc.201800693

    30. [30]

      Aniguchi, T.; Goto, N.; Ishibashi, H. Tetrahedron Lett. 2009, 50, 4857.  doi: 10.1016/j.tetlet.2009.06.014

    31. [31]

      Poisson, T.; Gembus, V.; Oudeyer, S.; Marsais, F.; Levacher, V. J. Org. Chem. 2009, 74, 3516.  doi: 10.1021/jo802763b

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    6. [6]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    7. [7]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    17. [17]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(4)
  • Abstract views(940)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return