Direct Synthesis of Sulfonated or Sulfenylated Pyrazolones Mediated by KIO3 and Their Anti-microbial Activity

Daoqing Dong Wenjing Chen Demao Chen Lixia Li Guanghui Li Zuli Wang Qi Deng Shu Long

Citation:  Dong Daoqing, Chen Wenjing, Chen Demao, Li Lixia, Li Guanghui, Wang Zuli, Deng Qi, Long Shu. Direct Synthesis of Sulfonated or Sulfenylated Pyrazolones Mediated by KIO3 and Their Anti-microbial Activity[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3190-3198. doi: 10.6023/cjoc201904070 shu

KIO3促进的直接合成硫化或磺酰化吡唑啉酮及其抗菌活性

    通讯作者: 王祖利, wangzulichem@163.com
  • 基金项目:

    国家自然科学基金 21772107

    青岛农业大学高层次人才基金 631303

    国家自然科学基金(Nos.21402103,21772107)、中国博士后基金(No.150030)、青岛农业大学高层次人才基金(No.631303)资助项目

    国家自然科学基金 21402103

    中国博士后基金 150030

摘要: 建立了由KIO3促进的合成硫化或磺酰化的吡唑啉酮的简便有效的方法.以中等至高产率获得各种所需产物.该方法可在比较温和的反应条件下进行,无需任何金属.对照实验表明,该反应的机理与先前的KIO3催化反应不同.其中一些产物对苹果腐烂菌和灰霉病菌有很高的抑制活性.

English

  • Pyrazole and its derivatives are important heterocycles and prominent chemical entities which have been found in diverse pharmacological and biologically-active com- pounds.[1] Accordingly, more and more efforts have been devoted to the development of a synthetic methodology for the chemical derivatization on the pyrazole nucleus. In particular, the syntheses of sulfenylated or sulfonated pyrazoles have received much attention in organic chemistry because of their usefulness as herbicidal agents, [2] antioxidants, [3] agrochemicals, and materials.[4] Previous method for the synthesis of sulfonated pyrazoles suffer from the extra steps needed for the preparation of active precursors.[5] For example, in 2017, Wang and his coworkers[6] developed a convenient molecular iodine- catalyzed direct sulfonylation of pyrazolones at room temperature (Figure 1b). Shermolovich et al.[7a] had earlier described a protocol for the oxidation of preformed pyrazolones by employingstoichiometric amounts of m- chloroperoxybenzoic acid (m-CPBA) or H2O2 (Figure 1a). Our group[7b] also realized the sulfonylation of pyrazolones using water as solvent (Figure 1c). In 2014, Lu et al.[8] reported sulphenylation of pyrazolones with aryl sulphonylhydrazides catalyzed by I2. A tetrabutylammo- nium iodide (TBAI)-HBr system which mediated the reaction between pyrazolones and benzenesulfonyl chlorides was realized by Yanʼs group.[9] In 2016, Wang's group[10] found that NaOH was good promoter for sulfenylation of pyrazolones. In 2017, Wang et al.[11] obtained the sulfenylated pyrazoles via a radical pathway promoted by dimethyl sulfoxide (DMSO). Nevertheless, it is still of interest to develop simple and efficient methods for the synthesis of sulfenylated or sulfonated pyrazoles.

    Figure 1

    Figure 1.  Synthesis of sulfonated pyrazoles.

    Compared with other metal catalysts, iodine reagent has the merits of low cost, ready availability, non-toxicity etc. At present, various reactions such as sulfonylation, [12] cyclization, [13] oxidation etc., [14] have been successfully realized in the presence of iodine reagents.[15] With our on-going interest in iodine reagent-catalyzed reactions and C—H bond activation, [16] herein the KIO3 mediated reaction for the synthesis of sulfonated or sulfenylated pyrazoles was present.

    Initially, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (A1) and sodium benzenesulfinate (B1) were chosen as model substrate for optimization of the reaction condition. When the model reaction was conducted in DMSO, the product was generated in 35% yield (Table 1, Entry 1). Other solvents such as 1, 2-dimethoxyethane, tetrahydrofuran (THF), ethylene glycol also gave low yields (Table 1, Entries 2, 4, 5). The desired product could be achieved in higher yield (62%) when ethanol was the solvent (Table 1, Entry 3). However, only trace amount of product was detected when reaction was carried out in CH3CN, CHCl3, 1, 2-dichlo- roethane, 1, 4-dioxane, toluene (Table 1, Entries 6~10). To our delight, higher yield of product (86%) was obtained when the reaction temperature was changed to 120 ℃ (Table 1, Entry 11). If the reaction temperature was further elevated to 130 ℃, however, no improvement on the yield of product was observed (Table 1, Entry 12). Furthermore, reducing the amounts of catalyst lead to a decreased yield of product (Table 1, Entry 13). When no KIO3 was added or KCl was used as catalyst, the reaction did not proceed (Table 1, Entries 14, 15). The desired product could be obtained in 83% yield when the reaction was conducted under N2 atmosphere (Table 1, Entry 16).

    Table 1

    Table 1.  Optimization of the conditionsa
    下载: 导出CSV
    Entry Catalyst (equiv.) Solvent T/℃ Yield/%
    1 KIO3 (0.30) DMSO 100 35
    2 KIO3 (0.30) 1, 2-Dimethoxyethane 100 40
    3 KIO3 (0.30) EtOH 100 62
    4 KIO3 (0.30) THF 100 24
    5 KIO3 (0.30) Ethylene glycol 100 48
    6 KIO3 (0.30) CH3CN 100 Trace
    7 KIO3 (0.30) CHCl3 100 Trace
    8 KIO3 (0.30) 1, 2-Dichloroethane 100 Trace
    9 KIO3 (0.30) 1, 4-Dioxane 100 Trace
    10 KIO3 (0.30) Toluene 100 Trace
    11 KIO3 (0.30) EtOH 120 86
    12 KIO3 (0.30) EtOH 130 86
    13 KIO3 (0.20) EtOH 120 78
    14b EtOH 120 NR
    15 KCl EtOH 120 NR
    16c KIO3 (0.30) EtOH 120 83
    a reaction conditions: A1 (0.25 mmol, 1.0 equiv.), B1 (1.3 equiv.), KIO3, solvent (1 mL), 8 h. b KIO3 was not added. c Under N2.

    With the optimized reaction conditions in hand, the scope of the reaction was examined and it was found that a variety of substrates were applicable to this transformation. As shown in Table 2, pyrazolones which have electron- donating or electron-withdrawing groups on the aryl rings such as 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, 3-me- thyl-1-(p-tolyl)-1H-pyrazol-5(4H)-one, 1-(4-chlorophenyl)- 3-methyl-1H-pyrazol-5(4H)-one and 1-(2-chlorophenyl)- 3-methyl-1H-pyrazol-5(4H)-one were suitable for this reaction and the desired products were obtained in moderate to high yields (C1~C8). For the substituted sodium sulfinates, different groups were also well-tolerated in this transformation (C9~C13). As it is well-known, F is an important substituent in organic synthesis. It is noteworthy that when sodium 4-fluorobenzenesulfinate was tested, the desired products were obtained in 73%~82% yields (C10, C11). To our delight, sodium methane- sulphinate also worked smoothly in the reaction, affording the corresponding products in moderate yields (C14, C15).

    Table 2

    Table 2.  Sulfonylation of pyrazolones with sodium sulfinates
    下载: 导出CSV

    In order to further explore KIO3-catalyzed reactions, the reaction between 4-methylbenzenethiol and 3-methyl-1- phenyl-1H-pyrazol-5(4H)-one was also tested in the presence of KIO3. When EtOH was used as solvent, the desired product was obtained in 60% yield. After a series of reaction condition screening experiments, the optimized reaction conditions for this reaction were found to be KIO3 (0.30 equiv.) as catalyst, CHCl3 as solvent at 100 ℃ for 8 h.

    Having the optimized reaction conditions in hand, the scope of substrates which could be used were next investigated (Table 3). When 3-methyl-1-phenyl-1H- pyrazol-5(4H)-one was tested, the product E1 was obtained in 90% yield. Other substituents, such as Cl and CH3 on the phenyl ring of pyrazolones were also tolerated in this system (E2, E3). It is possible that the steric effect palys an important role on the yields. When substituents are on the 4-position of aryl thiols, the corresponding products were afforded in high yields (E10~E16). On the other hand, when substituents are on 3-position or 2-position of aryl thiols, relatively lower yields were observed (E4~E9). Naphthalene-1-thiol was also well tolerated in this reaction and the desired product was obtained in 80% yields (E17). To our disappointment, there was no corresponding product when 1, 3-dimethyl- 1H-pyrazol-5(4H)-one was subjected to this transformation (E18).

    Table 3

    Table 3.  Reaction of pyrazolones with aryl thiols
    下载: 导出CSV

    Although the reaction mechanism is not clear at this stage, a control experiment was performed to gain an insight into this transformation. When reactions were carried out in the presence of a radical scavenger such as, 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO), reactions were obviously inhibited (Scheme 1). This result reveled that a radical pathway might be involved in the trans- formation. This is different from the previously reported KIO3-catalyzed reacitons.[15h~15j] In those reported KIO3- catalyzed reactions, the possibility of a radical pathway was excluded.

    Scheme 1

    Scheme 1.  Control experiments

    With a view to discovering the biological activity of these desired products, several products from Tables 2 and 4 were preliminarily screened for anti-microbial activity. It can be seen from Table 4 that products C4, E2, E11, E12, E14, E15 and E16 exhibited significant inhibitory activity against Valsa mali. Compound C4 showed 78% inhibition of Botrytis cirerea. These inhibition values are higher than those reported for Carbendazim.[17, 18] To our disappointment, all the compounds were not very active to C. gloeosporioides and the highest inhibition rated was 50.52%.

    Table 4

    Table 4.  Antifungal activity of synthetic compounds (inhibition rate/%)
    下载: 导出CSV
    Compd. V. mali B. cinerea C. glecosporioides
    C4 82.63 78.15 25.81
    E2 81.38 58.82 24.26
    E12 81.12 66.39 50.52
    E14 83.33 56.17 39.69
    E16 81.67 34.40 38.92
    E15 70.34 38.25 26.29
    E11 75.34 52.9 20.73
    E3 57.66 56.15 11.11

    In summary, an efficient and facile method for construction of sulfonated or sulfenylated pyrazolones has been successfully developed. Without additional oxidant, a variety of desired products could be obtained in moderate to high yields in mild reaction condition. Radical was proposed for this reaction mechanism which is different from previous KIO3-catalyzed C—S bond formation reactions. Further studies into the reaction mechanism and bioactivity are ongoing in our laboratory.

    NMR spectra were recorded on a BRUKER AVANCE III HD 500 MHz spectrometers, operating at 500 MHz for 1H NMR and at 126 MHz for 13C NMR acquisitions. HRMS spectra were performed on a Orbitrap Fusion Lumos. All major chemicals and solvents were obtained from commercial sources and used without further purification.

    Typical procedure for the synthesis of sulfonylated pyrazolones: A sealable reaction tube equipped with a magnetic stirrer bar was charged with pyrazolone (0.5 mmol), sodium benzenesulfinate (1.3 equiv.), KIO3 (0.3 equiv.), and EtOH (2 mL). The reaction vessel was sealed and carried out 120 ℃ under air. After completion (detected by thin-layer chromatography), it was diluted with ethyl acetate, washed with water and brine, dried with Mg2SO4. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (ethyl acetate/petro- leum ether, V:V=1:3) to afford the corresponding product.

    Typical procedure for the synthesis of sulfenylated pyrazolones: A sealable reaction tube equipped with a magnetic stirrer bar was charged with pyrazolone (0.5 mmol), thiols (1.3 equiv.), KIO3 (0.3 equiv.), CHCl3 (2 mL). The reaction vessel was sealed and carried out 100℃ under air. After completion (detected by TLC), it was diluted with ethyl acetate, washed with water and brine, dried with Mg2SO4. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (methanol/dichloromethane, V:V= 1:10) to afford the corresponding product.

    3-Methyl-1-phenyl-4-(phenylsulfonyl)-1H-pyrazol-5-ol (C1): 67.6 mg, yield 86%. White solid, m.p. 191~192 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.00 (d, J=8.1 Hz, 2H), 7.93 (d, J=6.8 Hz, 2H), 7.50 (d, J=7.2 Hz, 3H), 7.26 (t, J=7.7 Hz, 2H), 6.97 (t, J=7.0 Hz, 1H), 2.16 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.69 (s), 147.05 (s), 146.07 (s), 141.19 (s), 131.65 (s), 129.01 (s), 128.62 (s), 125.71 (s), 122.62 (s), 118.24 (s), 95.28 (s), 15.61 (s); IR (KBr) ν: 1580, 1507, 1456, 1132 cm-1; HRMS calcd for C16H13O3N2S [M-H] 313.06524; found 313.06485.

    3-Methyl-1-phenyl-4-tosyl-1H-pyrazol-5-ol (C2): 64.9 mg, yield 79%. Brown solid, m.p. 170~172 ℃; 1H NMR (500 MHz, CD3OD-d4) δ: 7.86 (d, J=30.2 Hz, 4H), 7.52~6.85 (m, 5H), 2.37 (s, 3H), 2.21 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.32 (s), 145.95 (s), 143.98 (s), 141.89 (s), 140.97 (s), 129.53 (s), 128.68 (s), 125.92 (s), 122.91 (s), 118.52 (s), 95.78 (s), 21.39 (s), 15.38 (s); IR (KBr) ν:1601, 1568, 1497, 1455, 1128, 740 cm-1; HRMS calcd for C17H15O3N2S [M-H] 327.08089; found 327.08047.

    4-((4-Chlorophenyl)sulfonyl)-3-methyl-1-phenyl-1H-pyrazol-5-ol (C3): 66.3 mg, yield 76%. Yellow solid, m.p. 140~142 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.96 (dd, J=18.7, 8.0 Hz, 4H), 7.56 (d, J=7.8 Hz, 2H), 7.26 (t, J=7.4 Hz, 2H), 6.99 (t, J=7.0 Hz, 1H), 2.16 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.26 (s), 146.02 (s), 145.57 (s), 140.89 (s), 136.52 (s), 129.13 (s), 128.65 (s), 127.78 (s), 122.94 (s), 118.47 (s), 15.46 (s); IR (KBr) ν: 1602, 1591, 1499, 1455, 1130, 728 cm-1; HRMS calcd for C16H12O3N2ClS [M-H] 347.02626; found 347.02583.

    1-(4-Chlorophenyl)-3-methyl-4-(phenylsulfonyl)-1H-pyrazol-5-ol (C4): 67.1 mg, yield 77%. Light pink solid, m.p. 196~198 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.07 (d, J=8.7 Hz, 2H), 7.94 (d, J=6.7 Hz, 2H), 7.51 (d, J=6.9 Hz, 3H), 7.32 (d, J=8.6 Hz, 2H), 2.18 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.89 (s), 147.01 (s), 146.69 (s), 140.02 (s), 131.73 (s), 129.08 (s), 128.53 (s), 126.31 (s), 125.68 (s), 119.60 (s), 95.43 (s), 15.53 (s); IR (KBr) ν:1603, 1587, 1507, 1446, 1136, 721 cm-1; HRMS calcd for C16H12O3N2ClS [M-H] 347.02626; found 347.02587.

    1-(4-Chlorophenyl)-4-((4-chlorophenyl)sulfonyl)-3-methyl-1H-pyrazol-5-ol (C5): 73.8 mg, yield 77%. Brown solid, m.p. 218~221 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.08 (d, J=8.4 Hz, 2H), 7.98 (d, J=8.0 Hz, 2H), 7.61 (d, J=7.7 Hz, 2H), 7.35 (d, J=8.1 Hz, 2H), 2.21 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.48 (s), 146.60 (s), 145.65 (s), 139.87 (s), 136.46 (s), 129.12 (s), 128.56 (s), 127.75 (s), 126.30 (s), 119.50 (s), 95.40 (s), 15.57 (s); IR (KBr) ν:1582, 1525, 1132, 761 cm-1; HRMS calcd for C16H11O3N2- Cl2S [M-H] 380.98729; found 380.98740.

    3-Methyl-4-(phenylsulfonyl)-1-(p-tolyl)-1H-pyrazol-5-ol (C6): 60.8 mg, yield 74%. Yellow solid, m.p. 194~198 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.99 (d, J=7.4 Hz, 2H), 7.78~7.56 (m, 3H), 7.51 (d, J=8.2 Hz, 2H), 7.24 (d, J=8.2 Hz, 2H), 2.35 (s, 3H), 2.31 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 155.91 (s), 147.50 (s), 144.28 (s), 136.04 (s), 134.88 (s), 133.16 (s), 129.80 (s), 129.59 (s), 126.55 (s), 121.76 (s), 102.35 (s), 20.99 (s), 13.77 (s); IR (KBr) ν:1592, 1569, 1513, 1445, 1136, 744 cm-1; HRMS calcd for C17H15O3N2S [M-H]: 327.08089; found 327.08047.

    4-((4-Chlorophenyl)sulfonyl)-3-methyl-1-(p-tolyl)-1H-pyrazol-5-ol (C7): 61.7 mg, yield 68%. Yellow-green solid, m.p. 138~140 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.96 (d, J=8.5 Hz, 2H), 7.84 (d, J=8.3 Hz, 2H), 7.56 (d, J=8.5 Hz, 2H), 7.10 (d, J=8.3 Hz, 2H), 2.26 (s, 3H), 2.21 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 161.85 (s), 145.91 (s), 145.57 (s), 138.23 (s), 136.65 (s), 132.19 (s), 129.20 (d, J=7.2 Hz), 127.75 (s), 118.92 (s), 95.92 (s), 20.92 (s), 15.27 (s); IR (KBr) ν:1511, 1456, 1140, 757 cm-1; HRMS calcd for C17H14O3N2ClS [M-H] 361.04191; found 361.04156.

    1-(2-Chlorophenyl)-3-methyl-4-tosyl-1H-pyrazol-5-ol (C8): 68.9 mg, yield 76%. Yellow solid, m.p. 179~183 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.83 (d, J=6.8 Hz, 2H), 7.52 (s, 1H), 7.46~7.17 (m, 5H), 2.36 (s, 3H), 2.15 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 161.29 (s), 146.34 (s), 143.75 (s), 142.18 (s), 137.12 (s), 131.56 (s), 130.47 (s), 130.28 (s), 130.16~129.93 (m), 129.47 (d, J=43.9 Hz), 127.76 (s), 125.97 (s), 95.54 (s), 21.42 (s), 14.57 (s); IR (KBr) ν:1596, 1507, 1487, 1130, 747 cm-1; HRMS calcd for C17H14O3N2ClS [M-H]: 361.04191; found 361.04150.

    1-(2-Chlorophenyl)-4-((4-chlorophenyl)sulfonyl)-3-methyl-1H-pyrazol-5-ol (C9): 77.6 mg, yield 81%. Brown solid, m.p. 135~139 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.91 (d, J=8.5 Hz, 2H), 7.55 (d, J=8.4 Hz, 2H), 7.47 (d, J=7.5 Hz, 1H), 7.37~7.17 (m, 3H), 2.09 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.82 (s), 146.40 (s), 145.93 (s), 138.15 (s), 136.19 (s), 131.35 (s), 130.21 (d, J=12.7 Hz), 129.07 (s), 128.45 (s), 127.53 (d, J=7.9 Hz), 93.15 (s), 15.65 (s); IR (KBr) ν:1596, 1558, 1507, 1134, 757 cm-1; HRMS calcd for C16H11O3N2Cl2S [M-H] 380.98729; found 380.98746.

    1-(4-Chlorophenyl)-4-((4-fluorophenyl)sulfonyl)-3-methyl-1H-pyrazol-5-ol (C10): 75.2 mg, yield 82%. White solid, m.p. 180~182 ℃(dec.); 1H NMR (500 MHz, DMSO-d6) δ: 8.06 (d, J=8.7 Hz, 2H), 7.98 (dd, J=7.9, 5.6 Hz, 2H), 7.32 (dd, J=11.1, 9.1 Hz, 4H), 2.17 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 164.96 (s), 162.92 (d, J=14.9 Hz), 146.55 (s), 143.52 (s), 140.07 (s), 128.51 (t, J=4.5 Hz), 126.13 (s), 119.39 (s), 116.08 (s), 115.91 (s), 95.41 (s), 15.64 (s); IR (KBr) ν:1588, 1490, 1133, 734 cm-1; HRMS calcd for C16H11O3ClFS [M-H] 365.01684; found 365.01691.

    4-((4-Fluorophenyl)sulfonyl)-3-methyl-1-phenyl-1H-py-razol-5-ol (C11): 60.7 mg, yield 73%. Brown solid, m.p. 110~112 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.04 (s, 2H), 7.87 (s, 2H), 7.35 (d, J=5.7 Hz, 4H), 7.11 (s, 1H), 2.26 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 165.44 (s), 163.45 (s), 159.96 (s), 146.78 (s), 142.06 (s), 139.41 (s), 129.75~128.81 (m), 124.52 (s), 119.81 (s), 116.47 (s), 116.29 (s), 98.47 (s), 40.46 (s), 40.21 (d, J=21.0 Hz), 39.88 (d, J=21.0 Hz), 39.54 (d, J=21.0 Hz), 39.40~39.21 (m), 14.69 (s); IR (KBr) ν:1605, 1493, 1455, 1141, 728 cm-1; HRMS calcd for C16H12O3N2FS [M-H] 331.05581; found 331.05527.

    3-Methyl-1-(p-tolyl)-4-tosyl-1H-pyrazol-5-ol (C12): 63.3 mg, yield 74%. Brown solid, m.p. 190~192 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.86 (d, J=8.1 Hz, 2H), 7.49 (d, J=8.1 Hz, 2H), 7.39 (d, J=8.0 Hz, 2H), 7.25 (d, J=8.2 Hz, 2H), 2.37 (s, 3H), 2.34 (s, 3H), 2.31 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 160.18 (s), 152.18 (s), 148.33 (s), 146.13 (s), 140.94 (s), 139.53 (s), 134.82 (s), 134.68 (d, J=25.2 Hz), 131.42 (s), 126.62 (s), 107.76 (s), 26.21 (s), 25.74 (s), 18.44 (s); IR (KBr) ν:1590, 1559, 1456, 1130, 741 cm-1; HRMS calcd for C18H17O3N2S [M-H] 341.09654; found 341.09659.

    1-(4-Chlorophenyl)-3-methyl-4-tosyl-1H-pyrazol-5-ol (C13): 68.9 mg, yield 76%. Green solid, m.p. 198~200 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.01 (d, J=9.0 Hz, 2H), 7.79 (d, J=7.8 Hz, 2H), 7.53~7.00 (m, 4H), 2.33 (s, 3H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.22 (s), 146.70 (s), 144.29 (s), 141.77 (s), 139.85 (s), 129.47 (s), 128.57 (s), 125.88 (s), 119.59 (s), 96.24 (s), 21.38 (s), 15.52 (s); IR (KBr) ν:1601, 1586, 1491, 1129, 751 cm-1; HRMS calcd for C17H14O3N2ClS [M-H] 361.04191; found 361.04141.

    3-Methyl-4-(methylsulfonyl)-1-(p-tolyl)-1H-pyrazol-5-ol (C14): 41.9 mg, yield 63%. Brown solid, m.p. 138~140 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.90 (d, J=4.6 Hz, 2H), 7.10 (d, J=7.0 Hz, 2H), 3.02 (s, 3H), 2.27 (s, 3H), 2.17 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.15 (s), 145.45 (s), 138.67 (s), 131.85 (s), 129.17 (s), 118.78 (s), 95.64 (s), 44.67 (s), 20.93 (s), 15.08 (s); IR (KBr) ν:1623, 1508, 1130, 771 cm-1; HRMS calcd for C12H13O3- N2S [M-H]: 265.06524; found 265.06552.

    3-Methyl-4-(methylsulfonyl)-1-phenyl-1H-pyrazol-5-ol (C15): 41.6 mg, yield 66%. Yellow solid, m.p. 165~167 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.01 (d, J=7.8 Hz, 2H), 7.30 (t, J=7.5 Hz, 2H), 7.03 (t, J=7.1 Hz, 1H), 3.02 (s, 3H), 2.17 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 162.15 (s), 145.89 (s), 140.84 (s), 128.71 (s), 123.20 (s), 118.87 (s), 96.13 (s), 44.55 (s), 15.10 (s); IR (KBr) ν:1602, 1573, 1506, 1119, 773 cm-1; HRMS calcd for C11H11O3N2S [M-H] 251.04959; found 251.04915.

    3-Methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-ol (E1): 66.7 mg, yield 90%. White solid, m.p. 208~210 ℃ (dec.) (lit.[10] 178.8~179.7 ℃); 1H NMR (500 MHz, DMSO-d6) δ: 12.20 (s, 1H), 7.77 (d, J=8.0 Hz, 2H), 7.48 (t, J=7.7 Hz, 2H), 7.28 (t, J=7.3 Hz, 1H), 7.10 (d, J=7.9 Hz, 2H), 7.01 (d, J=7.9 Hz, 2H), 2.24 (s, 3H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.47 (s), 138.68 (s), 135.27 (s), 134.79 (s), 130.14 (s), 129.41 (s), 126.15 (s), 125.79 (s), 121.18 (s), 88.49 (s), 20.89 (s), 12.80 (s); IR (KBr) ν:1609, 1489, 1079, 761 cm-1; HRMS calcd for C17H15ON2S [M-H] 295.09106; found 295.09082.

    3-Methyl-1-(p-tolyl)-4-(p-tolylthio)-1H-pyrazol-5-ol (E2): 71.4 mg, yield 92%. Light yellow solid m.p. 195~197 ℃ (lit.[10] 98.9~100.7℃); 1H NMR (500 MHz, DMSO-d6) δ: 7.63 (d, J=8.1 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 7.10 (d, J=7.9 Hz, 2H), 7.00 (d, J=7.9 Hz, 2H), 2.34 (s, 3H), 2.24 (s, 3H), 2.13 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.04 (s), 136.34 (s), 135.40 (d, J=17.2 Hz), 134.75 (s), 130.13 (s), 129.81 (s), 125.75 (s), 121.24 (s), 88.07 (s), 20.93 (d, J=11.2 Hz), 12.78 (s); IR (KBr) ν:1616, 1489, 1457, 1074, 777 cm-1; HRMS calcd for C18H17ON2S [M-H]: 309.10671; found 309.10657.

    1-(4-Chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (E3): 71.1 mg, yield 86%. White solid m.p. 185~188 ℃ (dec.) (lit.[10] 89.7~90.1 ℃); 1H NMR (500 MHz, DMSO-d6) δ: 7.82 (d, J=8.6 Hz, 2H), 7.52 (d, J=8.6 Hz, 2H), 7.08 (d, J=7.9 Hz, 2H), 7.01 (d, J=7.9 Hz, 2H), 2.23 (s, 3H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.41 (s), 152.90 (s), 137.55 (s), 135.10 (s), 134.83 (s), 130.14 (s), 129.38 (s), 125.82 (s), 122.41 (s), 88.72 (s), 20.88 (s), 12.81 (s); IR (KBr) ν:1606, 1489, 1073, 742 cm-1; HRMS calcd for C17H14O- N2ClS [M- H] 329.05208; found 329.05167.

    4-((2, 5-Dimethylphenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-ol (E4): 52.8 mg, yield 68%. White solid, m.p. 207~208 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.78 (d, J=7.9 Hz, 2H), 7.49 (t, J=7.6 Hz, 2H), 7.35~7.22 (m, 1H), 7.14~7.01 (m, 1H), 6.85 (d, J=7.5 Hz, 1H), 6.56 (s, 1H), 2.34 (s, 3H), 2.16 (s, 3H), 2.10 (d, J=19.1 Hz, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.58 (s), 152.68 (s), 138.70 (s), 137.34 (s), 135.98 (s), 131.09 (s), 130.47 (s), 129.44 (s), 126.14 (s), 125.85 (s), 124.62 (s), 121.13 (s), 87.34 (s), 21.34 (s), 19.35 (s), 12.82 (s); IR (KBr) ν: 1600, 1497, 1457, 1075, 730 cm-1; HRMS calcd for C18H19ON2S [M+H]+ 311.12126; found 311.12103.

    (4-Chlorophenyl)-4-((2, 5-dimethylphenyl)thio)-3-meth-yl-1H-pyrazol-5-ol (E5): 59.5 mg, yield 69%. White solid, m.p. 192~195 ℃ (dec.); 1H NMR (500 MHz, DMSO-d6) δ: 7.84 (d, J=7.2 Hz, 2H), 7.54 (d, J=7.2 Hz, 2H), 7.06 (d, J=6.7 Hz, 1H), 6.84 (d, J=6.8 Hz, 1H), 6.57 (s, 1H), 2.30 (d, J=26.6 Hz, 3H), 2.20 (d, J=44.6 Hz, 3H), 2.12 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.64 (s), 153.11 (s), 137.60 (s), 137.17 (s), 136.01 (s), 131.10 (s), 130.48 (s), 130.08 (s), 129.42 (s), 125.90 (s), 124.61 (s), 122.40 (s), 87.40 (s), 21.33 (s), 19.34 (s), 12.85 (s); IR (KBr) ν:1621, 1506, 1457, 1074, 741 cm-1; HRMS calcd for C18H18ON2ClS [M+H]+ 345.08229; found 345.08187.

    3-Methyl-1-phenyl-4-(m-tolylthio)-1H-pyrazol-5-ol (E6): 58.5 mg, yield 79%. White solid, m.p. 173~175 ℃ (lit.[10] 179.6~181.0 ℃); 1H NMR (500 MHz, DMSO-d6) δ: 7.79 (d, J=7.8 Hz, 2H), 7.49 (t, J=7.6 Hz, 2H), 7.29 (t, J=7.3 Hz, 1H), 7.23~7.09 (m, 1H), 6.95 (d, J=7.5 Hz, 2H), 6.85 (t, J=22.9 Hz, 1H), 2.26 (s, 3H), 2.16 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.62 (s), 152.62 (s), 138.94~138.21 (m), 129.40 (d, J=6.7 Hz), 126.23 (d, J=12.8 Hz), 125.91 (s), 122.58 (s), 121.20 (s), 88.20 (s), 21.45 (s), 12.78 (s); IR (KBr) ν:1590, 1506, 1456, 1073, 737 cm-1; HRMS calcd for C17H15ON2S [M-H] 295.09106; found 295.09067.

    1-(4-Chlorophenyl)-3-methyl-4-(m-tolylthio)-1H-pyraz-ol-5-ol (E7): 62.9 mg, yield 76%. White solid, m.p. 166~168 ℃ (dec.); 1H NMR (500 MHz, DMSO-d6) δ: 7.82 (d, J=7.8 Hz, 2H), 7.54 (d, J=7.8 Hz, 2H), 7.17 (t, J=7.5 Hz, 1H), 7.03~6.89 (m, 2H), 6.86 (d, J=7.7 Hz, 1H), 2.25 (s, 3H), 2.13 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.68 (s), 153.01 (s), 138.82 (s), 138.54 (s), 137.53 (s), 130.10 (s), 129.38 (s), 126.30 (s), 125.88 (s), 122.49 (d, J=19.1 Hz), 88.22 (s), 21.44 (s), 12.82 (s); IR (KBr) ν:1607, 15070, 1472, 1074, 734 cm-1; HRMS calcd for C17H16O- N2ClS [M+H]+ 311.06664; found311.06627.

    3-Methyl-1-(p-tolyl)-4-(m-tolylthio)-1H-pyrazol-5-ol (E8): 57.4 mg, yield 74%. White solid, m.p. 186~188 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.63 (d, J=7.8 Hz, 2H), 7.29 (d, J=7.9 Hz, 2H), 7.17 (t, J=7.7 Hz, 1H), 6.94 (d, J=10.4 Hz, 2H), 6.85 (d, J=7.7 Hz, 1H), 2.34 (s, 3H), 2.27 (d, J=11.4 Hz, 3H), 2.12 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.80 (s), 152.26 (s), 138.98 (s), 135.92 (d, J=130.3 Hz), 135.32~134.39 (m), 130.15 (s), 129.65 (d, J=55.3 Hz), 126.35 (s), 126.09 (d, J=44.5 Hz), 122.61 (s), 121.19 (s), 87.63 (s), 21.56 (s), 21.04 (s), 12.90 (s); IR (KBr) ν:1603, 1575, 1507, 1457, 1069, 777 cm-1; HRMS calcd for C18H19ON2S [M+H]+ 311.12126; found 311.12105.

    4-((2-Methoxyphenyl)thio)-3-methyl-1-(p-tolyl)-1H-py-razol-5-ol (E9): 62.8, 77%. White solid, m.p. 198~202 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.63 (d, J=7.9 Hz, 2H), 7.29 (d, J=7.9 Hz, 2H), 7.16~7.06 (m, 1H), 7.01 (t, J=13.7 Hz, 1H), 6.91~6.81 (m, 1H), 6.63 (d, J=7.1 Hz, 1H), 3.88 (s, 3H), 2.31 (d, J=33.8 Hz, 3H), 2.18~1.95 (m, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.26 (s), 155.28 (s), 152.46 (s), 136.35 (s), 135.48 (s), 129.81 (s), 126.97 (s), 126.02 (s), 124.56 (s), 121.75~121.70 (m), 121.43 (d, J=36.9 Hz), 111.16 (s), 85.87 (s), 56.09 (s), 20.98 (s), 12.75 (s); IR (KBr) ν:1575, 1507, 1472, 1063, 730 cm-1; HRMS calcd for C18H19O2N2S [M+H]+ 327.11618; found327.11583.

    1-(2-Chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol- 5-ol (E10): 67.8 mg, yield 82%. Light yellow solid, m.p. 188~190 ℃ (lit.[10] 98.7~100.1 ℃); 1H NMR (500 MHz, DMSO-d6) δ: 7.67 (d, J=7.4 Hz, 1H), 7.62~7.41 (m, 3H), 7.12 (d, J=7.8 Hz, 2H), 7.02 (d, J=7.7 Hz, 2H), 2.25 (s, 3H), 2.10 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 158.34 (s), 152.44 (s), 135.77 (d, J=17.4 Hz), 134.61 (s), 131.89 (s), 130.98 (s), 130.53 (d, J=15.7 Hz), 130.10 (s), 128.39 (s), 125.52 (s), 86.27 (s), 20.89 (s), 12.85 (s); IR (KBr) ν:1599, 1490, 1449, 1065, 737 cm-1; HRMS calcd for C17H14ON2ClS [M-H] 329.05208; found 329.05170.

    1-(4-Chlorophenyl)-4-((4-chlorophenyl)thio)-3-methyl- 1H-pyrazol-5-ol (E11): 72.9 mg, yield 83%. Yellow solid, m.p. 197~199 ℃ (dec.); 1H NMR (500 MHz, DMSO-d6) δ: 7.83 (d, J=8.1 Hz, 2H), 7.53 (d, J=8.1 Hz, 2H), 7.33 (d, J=7.8 Hz, 2H), 7.11 (d, J=7.8 Hz, 2H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.73 (s), 152.83 (s), 137.98 (s), 137.48 (s), 130.11 (d, J=14.8 Hz), 129.38 (d, J=2.1 Hz), 127.07 (s), 122.42 (s), 87.60 (s), 12.76 (s); IR (KBr) ν:1506, 1472, 1088, 741 cm-1; HRMS calcd for C16H11O- N2Cl2S [M-H] 348.99746; found 348.00710.

    4-((4-Chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol- 5-ol (E12): 65.7 mg, yield 83%.Yellow solid, m.p. 177~180 ℃ (lit.[10] 179.1~181.1 ℃); 1H NMR (500 MHz, DMSO-d6) δ: 12.33 (s, 1H), 7.80 (d, J=7.9 Hz, 2H), 7.49 (t, J=7.6 Hz, 2H), 7.45~7.24 (m, 3H), 7.13 (d, J=8.2 Hz, 2H), 2.17 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.34 (s), 152.43 (s), 138.34 (d, J=58.8 Hz), 130.05 (s), 129.42 (d, J=1.4 Hz), 127.07 (s), 126.26 (s), 121.25 (s), 87.52 (s), 12.75 (s); IR (KBr) ν:1612, 1496, 1471, 1070, 740 cm-1; HRMS calcd for C16H12ON2ClS [M-H] 315.03643; found 315.03625.

    4-((4-Chlorophenyl)thio)-3-methyl-1-(p-tolyl)-1H-pyrazol-5-ol (E13): 72.8 mg, yield 88%. Yellow solid, m.p. 183~184 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 7.64 (d, J=8.1 Hz, 2H), 7.34 (d, J=8.2 Hz, 2H), 7.28 (d, J=8.0 Hz, 2H), 7.11 (d, J=8.2 Hz, 2H), 2.34 (s, 3H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 157.05 (s), 152.02 (s), 138.18 (s), 136.22 (s), 135.58 (s), 129.99 (s), 129.81 (s), 129.39 (s), 127.03 (s), 121.30 (s), 87.17 (s), 20.98 (s), 12.72 (s); IR (KBr) ν:1600, 1509, 1471, 1078, 731 cm-1; HRMS calcd for C17H14ON2ClS [M-H] 329.05208; found 329.05182.

    1-(4-Chlorophenyl)-3-methyl-4-(phenylthio)-1H-pyrazol-5-ol (E14): 68.1 mg, yield 86%. White solid, m.p. 214~217 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 12.43 (s, 1H), 7.81 (d, J=8.6 Hz, 2H), 7.54 (d, J=8.7 Hz, 2H), 7.28 (t, J=7.6 Hz, 2H), 7.11 (dd, J=21.5, 7.5 Hz, 3H), 2.13 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.97 (s), 138.69 (s), 137.51 (s), 130.18 (s), 129.48 (d, J=15.3 Hz), 125.43 (d, J=8.3 Hz), 122.49 (s), 87.87 (s), 12.82 (s); IR (KBr) ν:1616, 1582, 1457, 1072, 736 cm-1; HRMS calcd for C16H12ON2- ClS [M-H]: 315.03643; found 315.03625.

    3-Methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-ol (E15): 63.5 mg, yield 90%. Light yellow solid, m.p. 187~189 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 12.18 (s, 1H), 7.74 (d, J=8.1 Hz, 2H), 7.48 (t, J=7.9 Hz, 2H), 7.28 (t, J=7.6 Hz, 3H), 7.19~6.88 (m, 3H), 2.12 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.51 (s), 138.87 (s), 138.64 (s), 129.49 (d, J=11.1 Hz), 126.22 (s), 125.40 (d, J=6.3 Hz), 121.24 (s), 12.81 (s); IR (KBr) ν:1617, 1500, 1457, 1076, 731 cm-1; HRMS calcd for C16H13ON2S [M-H] 281.07541; found 281.07501.

    3-Methyl-4-(phenylthio)-1-(p-tolyl)-1H-pyrazol-5-ol (E16): 58.5 mg, yield 79%. Light yellow solid, m.p. 190~193 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 12.11 (s, 1H), 7.62 (d, J=8.2 Hz, 2H), 7.28 (t, J=7.5 Hz, 4H), 7.18~6.80 (m, 3H), 2.33 (s, 3H), 2.12 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.12 (s), 138.95 (s), 136.32 (s), 135.52 (s), 129.82 (s), 129.51 (s), 125.37 (d, J=4.7 Hz), 121.31 (s), 87.47 (s), 20.99 (s), 12.79 (s); IR (KBr) ν:1605, 1510, 1077, 735 cm-1; HRMS calcd for C17H15ON2S [M-H] 295.09106; found 295.09055.

    3-Methyl-4-(naphthalen-1-ylthio)-1-(p-tolyl)-1H-pyrazol- 5-ol (E17): 69.3 mg, yield 80%. White solid, m.p. 193~194 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 8.33 (d, J=8.1 Hz, 1H), 7.96 (d, J=7.8 Hz, 1H), 7.66 (ddd, J=26.4, 20.4, 10.6 Hz, 5H), 7.52~7.36 (m, 1H), 7.30 (d, J=7.4 Hz, 2H), 7.03 (d, J=6.1 Hz, 1H), 2.35 (s, 3H), 2.16 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 152.36 (s), 136.31 (s), 135.68 (d, J=20.1 Hz), 133.91 (s), 130.36 (s), 129.86 (s), 129.02 (s), 126.81 (d, J=11.0 Hz), 126.48 (s), 125.58 (s), 123.72 (s), 122.18 (s), 121.35 (s), 21.01 (s), 12.80 (s); IR (KBr) ν:1623, 1506, 1456, 1069, 732 cm-1; HRMS calcd for C21H17ON2S [M-H] 345.10671; found 345.10617.

    Supporting Information    1H NMR and 13C NMR spectra copies of all the products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      (a) Elguero, J. Comprehensive Heterocyclic Chemistry, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Pergamon, Oxford, UK, 1996, p. 167.
      (b) Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg. Med. Chem. 2008, 16, 4075.
      (c) Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Franzblau, S. G.; Petukhov, P. A. J. Med. Chem. 2008, 51, 1999.
      (d) Magedov, I. V.; Manpadi, M.; Slambrouck, V. S.; Steelant, W. F. A.; Rozhkova, E.; Przheval'skii, N. M.; Rogelj, S.; Kornienko, A. J. Med. Chem. 2007, 50, 5183.
      (e) Vicentini, C. B.; Romagnoli, C.; Reotti, E.; Mares, D. J. Agric. Food Chem. 2007, 55, 10331.
      (f) Vicentini, C. B.; Guccione, S.; Giurato, L.; Ciaccio, R.; Mares, D.; Forlani, G. J. Agric. Food Chem. 2005, 53, 3848.
      (g) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
      (h) Liang, Q.; Zhang, Y.; Zeng, M.; Guan, L.; Xiao, Y.; Xiao, F. Toxicol. Res. 2018, 7, 521.
      (i) Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y.; Yu, X.; Gui, Q. Org. Biomol. Chem. 2019, 17, 2715.
      (j) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.

    2. [2]

      Kawakubo, K.; Shindo, M.; Konotsune, T. Plant Physiol. 1979, 64, 774.

    3. [3]

      Watanabe, K.; Morinaka, Y.; Iseki, K.; Watanabe, T.; Yuki, S.; Nishi, H. Redox Rep. 2003, 8, 151.

    4. [4]

      (a) Wolf, W. M. J. Mol. Struct. 1999, 474, 113.
      (b) Petrov, K. G.; Zhang, Y.; Carter, M.; Cockerill, G. S.; Dickerson, S.; Gauthier, C. A.; Guo, Y.; Mook, R. A.; Rusnak, D. W.; Walker, A. L.; Wood, E. R.; Lackey, K. E. Bioorg. Med. Chem. Lett. 2006, 16, 4686.
      (c) Ettari, R.; Nizi, E.; Francesco, M. E. D.; Dude, M. A.; Pradel, G.; Vicik, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappala, M. J. Med. Chem. 2008, 51, 988.

    5. [5]

      (a) Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016.
      (b) Kumar, R.; Verma, D.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4070.
      (c) Zhu, Y.; Lu, W. T.; Sun, H. C.; Zhan, Z. P. Org. Lett. 2013, 15, 4146.
      (d) Jeon, D. J.; Lee, J. N.; Lee, K. C.; Kim, H. R.; Zong, K.; Ryu, E. K. Bull. Korean Chem. Soc. 1998, 19, 1153.
      (e) Xu, X. H.; Wang, X.; Liu, G. K.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 2544.

    6. [6]

      Wei, W.; Cui, H.; Yang, D.; Liu, X.; He, C.; Dai, S.; Wang, H. Org. Chem. Front. 2017, 4, 26.

    7. [7]

      (a) Shermolovich, Y. G.; Emets, S. V. Chem. Heterocycl. Compd. 2000, 36, 152.
      (b) Li, L.; Hao, S.; Dong, D.; Wang, Z. Tetrahedron. Lett. 2018, 59, 1517;

    8. [8]

      Zhao, X.; Zhang, L.; Li, T.; Liu, G.; Wang, H.; Lu, K. Chem. Commun. 2014, 50, 13121.

    9. [9]

      Wang, D.; Guo, S.; Zhang, R.; Lin, S.; Yan, Z. RSC Adv. 2016, 6, 54377.

    10. [10]

      Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, T.; Sun, J.; Wei, W.; Wang, H. RSC Adv. 2016, 6, 51830.

    11. [11]

      Yang, D.; Sun, P.; Wei, W.; Meng, L.; He, L.; Fang, B.; Jiang, W.; Wang, H. Org. Chem. Front. 2016, 3, 1457.

    12. [12]

      Hu, F.; Gao, W.; Chang, H.; Li, X.; Wei, W. Chin. J. Org. Chem. 2015, 35, 1848.

    13. [13]

      (a) Mphahlele, M. J. Molecules 2009, 14, 4814.
      (b) Hummel, S.; Kirsch, S. F. Beilstein J. Org. Chem. 2011, 7, 847.

    14. [14]

      (a) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941.
      (b) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, Z.; He, W. M.; Xu, X. Green Chem. 2018, 20, 3683.
      (c) Bao, W. H.; He, M.; Wang, J.; Peng, T. X.; Sung, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W. M. J. Org. Chem. 2019, 84, 6065.
      (d) Lu, L.-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 1237.

    15. [15]

      (a) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375.
      (b) Nguyen, T. B. Asian J. Org. Chem. 2017, 6, 477.
      (c) Lauriers, A. J.; Legault. C. Y. Asian J. Org. Chem. 2016, 5, 1078.
      (d) Yoshimura, A.; Yusubov, M. S.; Zhdankin. V. V. Org. Biomol. Chem. 2016, 21, 4771.
      (e) Aggarwal, T.; Kumar, S.; Verma, A. K. Org. Biomol. Chem. 2016, 14, 7639.
      (f) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Chin. J. Org. Chem. 2014, 34, 1941.
      (g) Finkbeiner, P.; Nachtsheim. B. J. Synthesis 2013, 45, 979.
      (h) Liu M.; Huang H.; Chen Y. Chin. J. Chem. 2018, 36, 1209.
      (i) Wan, J.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
      (j) Hou J.; Zhang X.; Yu W.; Chang J. Chin. J. Org. Chem. 2018, 38, 3236.
      (k) Lu, L. H.; Zhou, S. J.; He, W. B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W. M. Org. Biomol. Chem. 2018, 16, 9064.
      (l) Bao, W. H.; Wu, C.; Wang, J. T.; Xia, W.; Chen, P.; Tang, Z.; Xu, X., He, W. M. Org. Biomol. Chem. 2018, 16, 8403.
      (m) Lu, L. H.; Zhou, S. J.; Sun, M.; Chen, J. L.; Xia, W.; Yu, X.; Xu, X.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
      (n) Tang, Y. Ran, S.; Wang, P.; Chen, P. Chin. J. Org. Chem. 2019, 39, 1116 (in Chinese).
      (唐裕才, 冉书童, 王萍, 陈飘, 有机化学, 2019, 39, 1116.)
      (o) Zhu, F.; Wang, Y.; He, M.; Yan, Z.; Lin, S. Chin. J. Org. Chem. 2019, 39, 1175 (in Chinese).
      (朱福元, 王彦梅, 何明闯, 严兆华, 林森, 有机化学, 2019, 39, 1175.)

    16. [16]

      (a) Hao, S.; Li, L.; Dong, D.; Wang, Z. Chin. J. Catal. 2017, 38, 1664.
      (b) Dong, D.; Hao, S.; Yang, D.; Li, L.; Wang, Z. Eur. J. Org. Chem. 2017, 6576.
      (c) Dong, D.; Zhang, H.; Wang, Z. RSC Adv. 2017, 7, 3780.
      (d) Zhang, H.; Dong, D.; Hao, S.; Wang, Z. RSC Adv. 2016, 6, 8465.
      (e) Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.
      (f) Hao, S.; Li, L.; Dong, D.; Wang, Z.; Yu, X. Tetrahedron Lett. 2018, 59, 4073.
      (g) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.
      (h) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
      (i) Yan, S.; Dong, D.-Q.; Xie, C.; Wang, W.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 2560 (in Chinese).
      (颜世强, 董道青, 解春文, 王文笙, 王祖利, 有机化学, 2019, 39, 2560.)
      (j) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313..
      (k) Xie, L. Y.; Peng, S.; Liu, F.; Chen, G. R.; Xia, W.; Yu, X.; Li, W. F.; Cao, Z.; He, W. M. Org. Chem. Front. 2018, 5, 2604.
      (l) Xie, L. Y.; Peng, S.; Jiang, L. L.; Peng, X.; Xia, W.; Yu, X.; Wang, X. X.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 2, 167.
      (m) Xu, X. M.; Chen, D. M.; Wang, Z. L. Chin. Chem. Lett. 2019, Doi: org/10.1016/j.cclet.2019.05.048.
      (n)Dong,D.Q.;Hao,S.Zhang,H.;Wang,Z.L.Chin.Chem.Lett.2017,28,1597.

    17. [17]

      乔丽丽, 魏艳, 郝双红, 有机化学, 2018, 38, 509.Qiao, L.; Wei, Y.; Hao, S. Chin. J. Org. Chem. 2018, 38, 509 (in Chinese). 

    18. [18]

      Jin, H.; Geng, Y.; Yu, Z.; Tao, K.; Hou, T. Pestic. Biochem. Physiol. 2009, 93, 133.

  • Figure 1  Synthesis of sulfonated pyrazoles.

    Scheme 1  Control experiments

    Table 1.  Optimization of the conditionsa

    Entry Catalyst (equiv.) Solvent T/℃ Yield/%
    1 KIO3 (0.30) DMSO 100 35
    2 KIO3 (0.30) 1, 2-Dimethoxyethane 100 40
    3 KIO3 (0.30) EtOH 100 62
    4 KIO3 (0.30) THF 100 24
    5 KIO3 (0.30) Ethylene glycol 100 48
    6 KIO3 (0.30) CH3CN 100 Trace
    7 KIO3 (0.30) CHCl3 100 Trace
    8 KIO3 (0.30) 1, 2-Dichloroethane 100 Trace
    9 KIO3 (0.30) 1, 4-Dioxane 100 Trace
    10 KIO3 (0.30) Toluene 100 Trace
    11 KIO3 (0.30) EtOH 120 86
    12 KIO3 (0.30) EtOH 130 86
    13 KIO3 (0.20) EtOH 120 78
    14b EtOH 120 NR
    15 KCl EtOH 120 NR
    16c KIO3 (0.30) EtOH 120 83
    a reaction conditions: A1 (0.25 mmol, 1.0 equiv.), B1 (1.3 equiv.), KIO3, solvent (1 mL), 8 h. b KIO3 was not added. c Under N2.
    下载: 导出CSV

    Table 2.  Sulfonylation of pyrazolones with sodium sulfinates

    下载: 导出CSV

    Table 3.  Reaction of pyrazolones with aryl thiols

    下载: 导出CSV

    Table 4.  Antifungal activity of synthetic compounds (inhibition rate/%)

    Compd. V. mali B. cinerea C. glecosporioides
    C4 82.63 78.15 25.81
    E2 81.38 58.82 24.26
    E12 81.12 66.39 50.52
    E14 83.33 56.17 39.69
    E16 81.67 34.40 38.92
    E15 70.34 38.25 26.29
    E11 75.34 52.9 20.73
    E3 57.66 56.15 11.11
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  86
  • HTML全文浏览量:  7
文章相关
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-06-05
  • 网络出版日期:  2019-11-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章