Citation: Feng Jiajun, Yi Xiangyan, Fu Yaofeng, Yu Yang, Huang Fei. Progress in N-H Insertion Reaction of α-Diazocarbonyl Compounds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3013-3025. doi: 10.6023/cjoc201904044 shu

Progress in N-H Insertion Reaction of α-Diazocarbonyl Compounds

  • Corresponding author: Huang Fei, huangfei0208@yeah.net
  • Received Date: 16 April 2019
    Revised Date: 23 May 2019
    Available Online: 9 November 2019

    Fund Project: the Jiangsu University Natural Science Research Program 19KJB150032the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture XTE1850the National Natural Science Foundation of China 21901124the China Postdoctoral Science Foundation 2019M651809Project supported by the National Natural Science Foundation of China (No. 21901124), the Jiangsu University Natural Science Research Program (No. 19KJB150032), the China Postdoctoral Science Foundation (No. 2019M651809), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1850) and the Anhui Province Postdoctoral Science Foundation (No. 2018B252)the Anhui Province Postdoctoral Science Foundation 2018B252

Figures(28)

  • The α-diazocarbonyl compounds are easy to prepare and can be dediazonized to highly reactive carbene intermediates under thermolytic or photolytic conditions. Chemical bonds can be efficiently constructed by carbene mediated reactions, including the insertion reaction of carbene into N-H bonds which is an effective method for constructing C-N bonds. The α-diazocarbonyl compounds have received extensive application in organic synthesis and pharmaceutical synthesis. The research progress in the insertion reaction of α-diazocarbonyl compounds into N-H bonds under transition metal, organic small molecules, biomacromolecule or photolytic and thermolytic conditions is summarized, including the reaction mechanism and synthesis applications. Finally, the prospects of this reaction are also discussed.
  • 加载中
    1. [1]

    2. [2]

      (a) Pelphrey, P.; Hansen, J.; Davies, H. M. L. Chem. Sci. 2010, 1, 254.
      (b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.
      (c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447.
      (d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
      (e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L., J. Am. Chem. Soc. 2017, 139, 7697.
      (f) Maas, G. Chem. Soc. Rev. 2004, 33, 183.

    3. [3]

      (a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
      (b) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.
      (c) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65.
      (d) Moody, C. J.; Taylor, R. J. Tetrahedron 1990, 46, 6525.
      (e) Roberts, E.; Sançon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075.

    4. [4]

      (a) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
      (b) Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev D. G.; Davies, H. M. L. Nature 2017, 551, 609.
      (c) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 9792.

    5. [5]

      (a) Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277.
      (b) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173.
      (c) Matsushita, H.; Lee, S.-H.; Yoshida, K.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D.Org. Lett. 2004, 6, 4627.
      (d) Pavlyuk, O.; Teller, H.; McMills, M. C. Tetrahedron Lett. 2009, 50, 2716.

    6. [6]

      (a) Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930.
      (b) Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv. Synth. Catal. 2017, 359, 2754.
      (c) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546.

    7. [7]

      (a) Zhang, Y.-Z.; Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Zhou, Q.-L. Chem. Commun. 2009, 5362.
      (b) Brunner, H.; Wutz, K.; Doyle, M. P. Monatsh. Chem. 1990, 121, 755.

    8. [8]

      (a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496.
      (b) Zrig, S.; Andrioletti, B.; Rose, E.; Colin, J. Tetrahedron Lett. 2005, 46, 1103.
      (c) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143.
      (d) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455.

    9. [9]

      Yudin, A. K. Catalyzed CarbonHeteroatom Bond Formation, Wiley-VCH, Weinheim, 2011.

    10. [10]

      Burtoloso, A. C. B.; Dias, R. M. P.; Bernardim, B. Acc. Chem. Res. 2015, 48, 921.  doi: 10.1021/ar500433t

    11. [11]

      Cama, L. D.; Christensen, B. G. Tetrahedron Lett. 1978, 19, 4233.  doi: 10.1016/S0040-4039(01)95189-5

    12. [12]

      Salzmann, T. N.; Ratcliffe, R. W.; Christensen, B. G.; Bouffard, F. A. J. Am. Chem. Soc. 1980, 102, 6161.  doi: 10.1021/ja00539a040

    13. [13]

      Ratcliffe, R. W.; Salzmann, T. N.; Christensen, B. G. Tetrahedron Lett. 1980, 21, 31.  doi: 10.1016/S0040-4039(00)93616-5

    14. [14]

      Xu, B.; Zhu, S. F.; Zuo, X. D.; Zhang, Z. C.; Zhou, Q. L. Angew. Chem., Int. Ed. 2014, 126, 3994.  doi: 10.1002/ange.201400236

    15. [15]

      (a) Davies, J. R.; Kane, P. D.; Moody, C. J. J. Org. Chem. 2005, 70, 7305.
      (b) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301.
      (c) Garcia, C. F.; McKervey, M. A.; Ye, T. Chem. Commun. 1996, 1465.
      (d) Lee, S.-H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829.
      (e) Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 12962.
      (f) Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152.

    16. [16]

      Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.  doi: 10.1021/ja01141a047

    17. [17]

      (a) Zhang, X.; Sui, Z. Tetrahedron Lett. 2006, 47, 5953.
      (b) Livant, P.; Jie, Y.; Wang, X. Tetrahedron Lett. 205, 46, 2113.
      (c) Chanthamath, S.; Thongjareun, S.; Shibatomi, K.; Iwasa, S. Tetrahedron Lett. 2012, 53, 4862.
      (d) Wang, Y.; Zhu, S. Org. Lett. 2003, 5, 745.
      (e) Vyavahare, V. P.; Chattopadhyay, S.; Puranik, V. G.; Dhavale, D. D. Synlett 2007, 559.
      (f) Saito, H.; Uchiyama, T.; Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.; Miyairi, S. Heterocycles 2010, 81, 1149.
      (g) Lian, X.; Meng, J.; Han, Z. Org. Lett. 2016, 18, 4270.
      (h) Huang, H.; Wang, Y.; Chen, Z.; Hu, W. Adv. Synth. Catal. 2005, 347, 531.
      (i) Medvedev, J. J; Galkina, O. S.; Klinkova, A. A.; Giera, D. S.; Hennig, L.; Schneider, C.; Nikolaev, V. A. Org. Biomol. Chem. 2015, 13, 2640.
      (j) Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2012, 51, 9829.

    18. [18]

      Saegusa, T.; Ito, Y.; Kobayashi, S.; Hirota, K.; Jhimizu, T. Tetrahedron Lett. 1966, 7, 6131.  doi: 10.1016/S0040-4039(00)70153-5

    19. [19]

      (a) Ramakrishna, K.; Sivasankar, C. J. Organomet. Chem. 2016, 805, 122.
      (b) Ramakrishna, K.; Sivasankar, C. J. Org. Chem. 2016, 81, 6609.

    20. [20]

      Tishinov, K.; Schmidt, K.; Häussinger, D.; Gillingham, D. G. Angew. Chem., Int. Ed. 2012, 51, 1200
       

    21. [21]

      Li, H.; Cheng, P.; Jiang, L.; Yang, J. L.; Zu, L. S. Angew. Chem., Int. Ed. 2017, 56, 2754.  doi: 10.1002/anie.201611830

    22. [22]

      Tishinov, K.; Schmidt, K.; Häussinger, D.; Gillingham, D. G. Angew. Chem., Int. Ed. 2012, 51, 1200
       

    23. [23]

      (a) Chan, K. H.; Guan, X.; Lo, V. K.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 2982.
      (b) Ho, C.-M.; Zhang, J.-L.; Zhou, C.-Y.; Chan, O.-Y.; Yan, J. J.; Zhang, F.-Y.; Huang, J.-S.; Che, C.-M. J. Am. Chem. Soc. 2010, 132, 1886.

    24. [24]

      Aviv, I.; Gross, Z. Chem. Commun. 2006, 4477.
       

    25. [25]

      Mangion, I. K.; Nwamba, I. K.; Shevlin, M.; Huffman, M. A. Org. Lett. 2009, 11, 3566.  doi: 10.1021/ol901298p

    26. [26]

      Anding, B. J.; Woo, L. K. Organometallics 2013, 32, 2599.  doi: 10.1021/om400098v

    27. [27]

      Ramakrishna, K.; Sivasankar, C. Org. Biomol. Chem. 2017, 15, 2392  doi: 10.1039/C7OB00177K

    28. [28]

      Bachmann, S.; Fielenbach, D.; Jørgensen, K. A. Org. Biomol. Chem. 2004, 2, 3044  doi: 10.1039/B412053A

    29. [29]

      Liu, B.; Zhu, S. F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834.  doi: 10.1021/ja0711765

    30. [30]

      Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066.  doi: 10.1021/ja074483j

    31. [31]

      Hou, Z.-R.; Wang, J.; He, P.; Wang, J.; Qin, B.; Liu, X.-H.; Lin, L.-L.; Feng, X.-M. Angew. Chem., Int. Ed. 2010, 49, 4763.  doi: 10.1002/anie.201001686

    32. [32]

      Zhang, Z.-H.; Wang, J.-B. Tetrahedron 2008, 64, 6577.  doi: 10.1016/j.tet.2008.04.074

    33. [33]

      Zhu, S.-F.; Xu, B.; Wang, G.-P.; Zhou, Q.-L. J. Am. Chem. Soc. 2012, 134, 436.  doi: 10.1021/ja2084493

    34. [34]

      (a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 1015.
      (b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
      (c) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047.
      (d) Kudirka, R.; Devine, S. K. J.; Adams, C. S.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2009, 48, 3677.

    35. [35]

      (a) Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G. Y.; Ma, B.; Sun, J. T. Org. Biomol. Chem. 2013, 11, 5998.
      (b) Zhu, Y.; Liu, X.; Dong, S.; Zhou, Y.; Li, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2014, 53, 1636.
      (c) Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2017, 56, 4156.

    36. [36]

      Xu, B.; Zhu, S. F.; Xie, X. L.; Shen, J. J.; Zhou, Q. L. Angew. Chem., Int. Ed. 2011, 50, 11483.  doi: 10.1002/anie.201105485

    37. [37]

      Guo, J. X.; Zhou, T.; Xu, B.; Zhu, S. F.; Zhou, Q. L. Chem. Sci. 2016, 7, 1104.  doi: 10.1039/C5SC03558A

    38. [38]

      Wang, Y. H.; Zhu, Y. X.; Chen, Z. Y.; Mi, A. Q.; Hu, W. H.; Doyle, M. P. Org. Lett. 2003, 5, 3923.  doi: 10.1021/ol035490p

    39. [39]

      (a) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lü, F.-P.; Xin, G.; Jiang, L.-Q.; Zhang, Z.-Y.; Hu, W.-H. J. Am. Chem. Soc. 2011, 133, 8428.
      (b) Jiang, J.; Ma, X.-C.; Liu, S.-Y.; Qian, Y.; Lü, F.-P.; Qiu, L.; Wu, X.; Hu, W.-H. Chem. Commun. 2013, 49, 4238.
      (c) Jiang, L.-Q.; Zhang, D.; Wang, Z.-Q.; Hu, W.-H. Synthesis 2013, 45, 452.
      (d) Ma, X.-C.; Jiang, J.; Lü, S.-Y.; Yao, W.-F.; Yang, Y.; Liu, S.-Y.; Xia, F.; Hu, W.-H. Angew. Chem., Int. Ed. 2014, 53, 13136.

    40. [40]

      (a) Ooi, T.; Kameda, M.; Fuji, J.; Maruoka, K. Org. Lett. 2004, 6, 2397.
      (b) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
      (c) Puglisi, A.; Raimondi, L.; Benaglia, M.; Bonsignore, M.; Rossi, S. Tetrahedron Lett. 2009, 50, 4340.

    41. [41]

      Nicolle, S. M.; William, L.; Hayes, C. J.; Moody, C. J. Angew. Chem., Int. Ed. 2016, 55, 3749.  doi: 10.1002/anie.201511433

    42. [42]

      (a) So, S. S.; Mattson, A. E. J. Am. Chem. Soc. 2012, 134, 8798.
      (b) Auvil, T. J.; So, S. S.; Mattson, A. E. Angew. Chem., Int. Ed. 2013, 52, 11317.
      (c) So, S. S.; Oottikkal, S.; Badjić, J. D.; Hadad, C. M.; Mattson, A. E. J. Org. Chem. 2014, 79, 4832.

    43. [43]

      Wang, Z. J.; Peck, N. E.; Renata, H.; Arnold, F. H. Chem. Sci. 2014, 5, 598.  doi: 10.1039/C3SC52535J

    44. [44]

      Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.  doi: 10.1039/C4CC08753D

    45. [45]

      Xu, X.; Li, C.; Tao, Z.; Pan, Y. J. Adv. Synth. Catal. 2015, 357, 3341.  doi: 10.1002/adsc.201500418

    46. [46]

      Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L. Org. Lett. 2012, 14, 4626.  doi: 10.1021/ol3020754

    47. [47]

      Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.  doi: 10.1039/C8SC01165F

  • 加载中
    1. [1]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    19. [19]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(57)
  • Abstract views(2776)
  • HTML views(624)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return