Citation: Zhang Shuo, Liao Gang, Shi Bingfeng. Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1522-1528. doi: 10.6023/cjoc201904030 shu

Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics

  • Corresponding author: Shi Bingfeng, bfshi@zju.edu.cn
  • Received Date: 11 April 2019
    Revised Date: 6 May 2019
    Available Online: 10 June 2019

    Fund Project: the National Natural Science Foundation of China 21572201Project supported by the National Basic Research Program of China (No.2015CB856600), the National Natural Science Foundation of China (Nos.21772170, 21572201), the Fundamental Research Funds for the Central Universities (No.2018XZZX001-02), the Natural Science Foundation of Zhejiang Province (No. LR17B020001) and the China Postdoctoral Science Foundation (No.2019M650135)the Natural Science Foundation of Zhejiang Province LR17B020001the National Basic Research Program of China 2015CB856600the China Postdoctoral Science Foundation No.2019M650135the National Natural Science Foundation of China 21772170the Fundamental Research Funds for the Central Universities 2018XZZX001-02

Figures(8)

  • Axially chiral biaryl skeletons are ubiquitous stuctural motifs that are widely represented in pharmaceuticals and natural products, and have been widely used as privileged chiral ligands/catalysts in asymmetric synthesis. Therefore, the asymmetric construction of these compounds has received tremendous attention. However, the established strategies are mainly limited to the construction of biaryls containing hexatomic aromatics, and the approaches towards atropisomers featuring pentatomic heteroaromatics connected through C-C or C-N bond have emerged gradually only until recently. The main hurdle is basically due to the increased distance of substituents ortho to the axis, which is responsible for lower barriers to rotation, thus rendering the asymmetric synthesis more challenging. This review summarizes recent advances on the enantioselective synthesis of atropisomers featuring pentatomic heteroaromatics.
  • 加载中
    1. [1]

      (a) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
      (b) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
      (c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005.
      (d) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., Int. Ed. 2009, 48, 6398.
      (e) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193;

    2. [2]

    3. [3]

      (a) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
      (b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
      (c) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197.
      (d) Bringmann, G.; Menche, D. Acc. Chem. Res. 2011, 34, 615.
      (e) Wencel-Delord, J.; Panossian, A; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
      (f) Ma, G.; Sibi, M. P. Chem.-Eur. J. 2015, 21, 11644.
      (g) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
      (h) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
      (i) Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem., Int. Ed. 2016, 55, 11642.
      (j) Xu, C.; Zheng, H.; Hu, B.; Liu, X.; Liu, L.; Feng, X. Chem. Commun. 2017, 53, 9741.
      (k) Zilate, B.; Castrogiovanni, A.; Sparr, C. ACS Catal. 2018, 8, 2981.
      (l) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804. (m) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.

    4. [4]

      (a) Bonne, D.; Rodriguez, J. Eur. J. Org. Chem. 2018, 2417.
      (b) Bonne, D.; Rodriguez, J. Chem. Commun. 2017, 53, 12385.

    5. [5]

      (a) Alkorta, I.; Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Adv. Heterocycl. Chem. 2012, 105, 1.
      (b) Djafri, A.; Roussel, C.; Sandströ m, J. J. Chem. Soc., Perkin Trans. 2 1985, 273.
      (c) Lomas, J. C.; Lacroix, J.-C.; Vaisser-mann, J. J. Chem. Soc., Perkin Trans. 2 1999, 2001.
      (d) Benincori, T.; Brenna, E.; Sannicolo, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E. J. Chem. Soc., Chem. Commun. 1995, 685.

    6. [6]

      Oki, M. Top. Stereochem. 1983, 14, 1.

    7. [7]

      Norton, R. S.; R. Wells, J. J. Am. Chem. Soc. 1982, 104, 3628.  doi: 10.1021/ja00377a014

    8. [8]

      Ito, C.; Thoyama, Y.; Omura, M.; Kjiura, I.; Furukawa, H. Chem. Pharm. Bull. 1993, 41, 2096  doi: 10.1248/cpb.41.2096

    9. [9]

      (a) Hughes, C. C.; Pietro-Davo, A.; Jensen, P. R.; Fenical, W. Org. Lett. 2008, 10, 629.
      (b) Schneider, P.; Schneider, G. Chem. Commun. 2017, 53, 2272.
      (c) Cheng, C.; Pan, L.; Chen, Y.; Song, H.; Qin, Y.; Li, R. J. Comb. Chem. 2010, 12, 541.
      (d) Kanakis, A. A.; Sarli, V. Org. Lett. 2010, 12, 4872.

    10. [10]

      (a) Urban, S.; Hobbs, L.; Hooper, J. N. A.; Capon, R. J. Aust. J. Chem. 1995, 48, 1491.
      (b) De Silva, K. T.; Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1972, 13, 913.

    11. [11]

      Schneiderab, P.; Schneider, G. Chem. Commun. 2017, 53, 2272.  doi: 10.1039/C6CC09693J

    12. [12]

      (a) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E. J. Chem. Soc., Chem. Commun. 1995, 685.
      (b) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T. J. Org. Chem. 1996, 61, 6244.
      (c) Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolò, F. J. Org. Chem. 2000, 65, 2043.
      (d) Andersen, N.; Parvez, M.; Keay, B. A. Org. Lett. 2000, 2, 2817.

    13. [13]

      (a) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.
      (b) Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.

    14. [14]

      Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116.  doi: 10.1002/anie.201608150

    15. [15]

      Ma, C.; Jiang, F.; Sheng, F.-T.; Jiao, Y.; Mei, G.-J.; Shi, F. Angew. Chem. Int. Ed. 2019, 58, 3014.  doi: 10.1002/anie.201811177

    16. [16]

      Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.  doi: 10.1021/jacs.6b09634

    17. [17]

      Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc. 2017, 139, 2140.  doi: 10.1021/jacs.6b11079

    18. [18]

      Wang, D.; Tong, X. Org. Lett. 2017, 19, 6392.  doi: 10.1021/acs.orglett.7b03250

    19. [19]

      Link, A.; Sparr, C. Angew. Chem. Int. Ed. 2018, 57, 7136.  doi: 10.1002/anie.v57.24

    20. [20]

      Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B. Nat. Chem. 2018, 10, 58.  doi: 10.1038/nchem.2866

    21. [21]

      He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.  doi: 10.1021/acscatal.7b01855

    22. [22]

      (a) Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Chem.-Eur. J. 2010, 16, 6752.
      (b) Peng, C.; Kusakabe, T.; Kikkawa, S.; Mochida, T.; Azumaya, I.; DaulatDhage, Y.; Takahashi, K.; Sasai, H.; Kato, K. Chem.-Eur. J. 2019, 25, 733.

    23. [23]

      Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.  doi: 10.1021/acscatal.8b04870

    24. [24]

      Li, T.-R.; Zhang, M.-M.; Wang, B.-C.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2018, 20, 3237.  doi: 10.1021/acs.orglett.8b01100

    25. [25]

      Zheng, S.-C.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2019, 58, 1494.  doi: 10.1002/anie.201812654

    26. [26]

      (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
      (b) Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Nat. Chem. 2018, 10, 755.

    27. [27]

    28. [28]

      (a) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 6617.
      (b) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661.
      (c) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 17151.

    29. [29]

      He, X.-L.; Zhao, H.-R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 4374.  doi: 10.1021/acscatal.9b00767

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    12. [12]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(18)
  • Abstract views(871)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return