Citation: Liu Tianbao, Peng Yanfen, Gui Meifang, Zhang Min. Metal-Free Rapid Synthesis of 2-Aroylamino Naphtho[1, 2-d]thiazoles[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3199-3206. doi: 10.6023/cjoc201904029 shu

Metal-Free Rapid Synthesis of 2-Aroylamino Naphtho[1, 2-d]thiazoles

  • Corresponding author: Liu Tianbao, tianbaoliu1979@126.com Zhang Min, 287323206@qq.com
  • Received Date: 11 April 2019
    Revised Date: 27 May 2019
    Available Online: 2 November 2019

    Fund Project: the Natural Science Foundation of Anhui Province 1808085QB48the National Natural Science Foundation of China 21271035the Provincial Teaching Team of Organic Chemistry 2017jxtd051Project supported by the National Natural Science Foundation of China (No. 21271035), the Natural Science Foundation of Anhui Province (No. 1808085QB48) and the Provincial Teaching Team of Organic Chemistry (No. 2017jxtd051)

Figures(1)

  • A novel and efficient approach has been developed to synthesize 2-aroylamino naphtho[1, 2-d]thiazole compounds through the reaction between 3-[1-(4-substituted naphthyl)]-1-aroylthiourea and iodosobenzene diacetate (IBD) under ambient air. A library of naphtho[1, 2-d]thiazole derivatives having a variety of substituents has been synthesized. A plausible reaction pathway has been predicted. This reaction offers a metal-free synthesis, broad substrate scope, easily accessible reactants, excellent regioselectivity, room temperature reaction conditions under ambient air. The reported method is the efficient approach for the synthesis of naphtho[1, 2-d]thiazole derivatives.
  • 加载中
    1. [1]

      (a) Joy, H. B.; Bogert, M. T. J. Org. Chem. 1936, 1, 236.
      (b) Keyes, G. H.; Brooker, L. G. S. J. Am. Chem. Soc. 1937, 59, 74.
      (c) Akins, D. L.; özçelik, S.; Zhu, H.-R.; Guo, C. J. Phys. Chem. A 1997, 101, 3251.
      (d) Urano, T.; Hino, E. Imaging Sci. J. 1999, 47, 127.
      (e) Huang, W.; Zhang, X.-H.; Wang, L.-Y.; Zhai, G.-H.; Wen, Z.-Y.; Zhang, Z.-X. J. J. Mol. Struct. 2010, 977, 39.

    2. [2]

      (a) Perrone, R.; Berardi, F.; Colabufo, N. A.; Tortorella, V.; Fornaretto, M. G.; Caccia, C.; Mcarthur, R. A. Eur. J. Med. Chem. 1997, 32, 739.
      (b) Li, Z.-G.; Yang, Q.; Qian, X.-H. Bioorg. Med. Chem. 2005, 13, 3149.
      (c) Hu, H.; Owwns, E. A.; Su, H.-R.; Yan, L.-L.; Lecitz, A.; Zhao, X.-Y.; Henary, M.; Zheng, Y. J. G. J. Med. Chem. 2015, 58, 1228.

    3. [3]

      (a) El-Shishtawy, R. M.; Asiri, A. M.; Basaif, S. A.; Sobahi, T. R. Spectrochim. Acta A 2010, 75, 1605.
      (b) Aiken, S.; Allsopp, B.; Booth, K.; Gabbutt, C. D.; Heron, B. M.; Rice, C. R. Tetrahedron 2014, 70, 9352.
      (c) Yang, W.; Liu, C.-L.; Gao, Q.-Y.; Du, J.-Y.; Shen, P.; Liu, Y.; Yang, C.-Y. Opt. Mater. 2017, 66, 623.
      (d) Liu, C.-L.; Yang, W.; Gao, Q.-Y.; Du, J.-Y.; Luo, H.-J.; Liu, Y.; Yang, C.-Y. J. Lumin. 2018, 197, 193.

    4. [4]

      (a) Lau, P. T. S.; Gompf, T. E. J. Org. Chem. 1970, 35, 4103.
      (b) Ulrich, P.; Cerami, A. J. Med. Chem. 1982, 25, 654.
      (c) El-Taweel, F. M. A. A.; Elnagdi, M. H. J. Heterocycl. Chem. 2001, 38, 981.
      (d) Al-Saleh, B.; El-Apasery, M. A.; Abdel-Aziz, R. S.; Elnagdi, M. H. J. Heterocycl. Chem. 2005, 42, 563.

    5. [5]

      Zhang, L.-F.; Ni, Z.-H.; Li, D.-Y.; Qin, Z.-H.; Wei, X.-Y. Chin. Chem. Lett. 2012, 23, 281.  doi: 10.1016/j.cclet.2011.12.004

    6. [6]

      Jonaghani, M. Z.; Boeini, H. Z. Spectrochim. Acta A 2017, 178, 66.  doi: 10.1016/j.saa.2017.01.065

    7. [7]

      (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.

    8. [8]

    9. [9]

      (a) Alvarado, J.; Fournier, J.; Zakarian, A. Angew. Chem., Int. Ed. 2016, 55, 11625.
      (b) Zhang, H.; Shen, J.; Cheng, G.; Feng, Y.; Cui, X. Org. Lett. 2018, 20, 664.
      (c) Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Org. Lett. 2015, 17, 5252.
      (d) Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353.
      (e) Zhang, N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2014, 79, 10581.

    10. [10]

      (a) Mariappan, A.; Rajaguru, K.; Roja, S. S.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 81, 302.
      (b) Downer-Riley, N. K.; Jackson, Y. A. Tetrahedron 2008, 64, 7741.
      (c) Guo, W.-S.; Gong, H.; Zhang, Y.-A.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 6394.
      (d) Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 2004, 104, 2667.
      (e) Xie, H.; Cai, J.-H.; Wang, Z.-L.; Huang, H.-W.; Deng, G.-J. Org. Lett. 2016, 18, 2196.
      (f) Wipf, P.; Venkatraman, S. J. Org. Chem. 1996, 61, 8004.
      (g) Kumar, D.; Kumar, N. M.; Chang, K.-H.; Gupta, R.; Shah, K. Bioorg. Med. Chem. Lett. 2011, 21, 5897.
      (h) Bose, D. S.; Idrees, M. J. Org. Chem. 2006, 71, 8261.

    11. [11]

      Kumar, D.; Kumar, N. M.; Chang, K.-H.; Gupta, R.; Shah, K. Bioorg. Med. Chem. Lett. 2011, 21, 5897.  doi: 10.1016/j.bmcl.2011.07.089

    12. [12]

      Liu, T.-B.; Peng, Y.-F. Chin. J. Chem. Educ. 2018, 39, 36 (in Chinese).

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    13. [13]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(6)
  • Abstract views(890)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return