Citation: Wang Mingfeng, Yu Maodong, Wang Wenshu, Lin Weili, Luo Feixian. Cross-Coupling of C-Si Bond by Using Silyl Reagents[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3145-3153. doi: 10.6023/cjoc201904024 shu

Cross-Coupling of C-Si Bond by Using Silyl Reagents

  • Corresponding author: Luo Feixian, luofeixian@muc.edu.cn
  • Received Date: 10 April 2019
    Revised Date: 28 May 2019
    Available Online: 24 November 2019

    Fund Project: the National Natural Science Foundation of China 91744206the Promotion Program for Young Teacher in Science and Technology Research of Minzu University of China 2019QNPY60Project supported by the National Natural Science Foundation of China (Nos. 21901263, 91744206), and the Promotion Program for Young Teacher in Science and Technology Research of Minzu University of China (No. 2019QNPY60)the National Natural Science Foundation of China 21901263

Figures(24)

  • Organosilanes have been widely applied in synthetic chemistry, pharmaceuticals, agrochemicals, and materials due to the special properties. Several synthetic strategies including nucleophilic substitution, hydrosilylation of alkene, and C-H silylation have been developed. In recent years, significant progress has advanced in the cross-coupling of C-Si bond for the synthesis of organosilanes, especially in the break-through of the cross-coupling of C(sp3)-Si bond. It has become one of the hottest issues in synthetic chemistry. The recent progress on the cross-coupling of C-Si bond by using silyl reagents is summarized. The application of silyl reagents in cross-coupling for C-Si bond formation including silyl boranes, organosilyl magnesium, organosilyl zinc, unasymetric disilanes, organosilyl aluminum and organosilyl lithium reagents is mainly discussed.
  • 加载中
    1. [1]

      Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, Chapter 5.

    2. [2]

      (a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
      (b) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X.; Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154.
      (c) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem. Int. Ed. 2015, 54, 14523.
      (d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem. Int. Ed. 2015, 54, 4661.
      (e) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
      (f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
      (g) Yang, Y.; Song, R.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1441.
      (h) Liu, J.; Chen, W.; Li, J.; Cui, C. ACS Catal. 2018, 8, 2230.
      (i) Huai, G. Z.; Teng, H. -L.; Luo, Y.; Lou, S.-J.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed. 2018, 57, 12342.

    3. [3]

      (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
      (b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
      (c) Tobisu, M.; Onoe, M.; Yusuke Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 7506.
      (d) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
      (e) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Mamoru Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477.
      (f) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. Angew. Chem. Int. Ed. 2012, 51, 1934.
      (g) Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6. 122.
      (h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
      (i) Liu, Y. J.; Liu, Y. H.; Zhang, Z. Z.; Yan, S. Y.; Chen, K.; Shi, B. F. Angew. Chem. Int. Ed. 2016, 55, 13859.
      (j) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666.
      (k) Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.

    4. [4]

      (a) Kakiuchi, F.; Igi, K.; Matsumoto, M.; Chatani, N.; Murai, S. Chem. Lett. 2001, 30, 422.
      (b) Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2008, 47, 5833.
      (c) Liang, Y.; Zhang, S. G.; Xi, Z. F. J. Am. Chem. Soc. 2011, 133, 9204.
      (d) Zhang, Q. W.; An, K.; He, W. Angew. Chem. Int. Ed. 2014, 53, 5667.
      (e) Li, L. W.; Zhang, Y. B.; Gao, L.; Song, Z. L. Tetrahedron Lett. 2015, 56, 1466.
      (f) Zhang, L.; Hang, Z.; Liu, Z.-Q. Angew. Chem. Int. Ed. 2016, 55, 236.
      (g) Xu, Z.; Xu, J. Z.; Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. Asian J. 2017, 12, 1749.
      (h) Li, W.; Xiao, G.; Deng, G.; Liang, Y. Org. Chem. Front. 2018, 5, 1488.

    5. [5]

      (a) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236.
      (b) Somerville, R. J.; Hale, L. V. A.; Gómez-Bengoa, E.; Burés, J.; Martin, R. J.Am.Chem.Soc. 2018, 140, 8771.

    6. [6]

      Zarate, C.; Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2017, 139, 1191.  doi: 10.1021/jacs.6b10998

    7. [7]

      Guo, H.; Chen, X.; Zhao, C.; He, W. Chem. Commun. 2015, 51, 17410  doi: 10.1039/C5CC07071F

    8. [8]

      Cui, B.; Jia, S.; Tokunaga, E.; Shibata, N. Nat. Commun. 2018, 9, 4393.  doi: 10.1038/s41467-018-06830-w

    9. [9]

      Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Cat. 2018, 360, 1032.  doi: 10.1002/adsc.201701497

    10. [10]

      Liu, X. W.; Zarate, C.; Martin, R. Angew. Chem. Int. Ed. 2019, 58, 2064.  doi: 10.1002/anie.201813294

    11. [11]

      Guo, L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 11810.  doi: 10.1002/anie.201604696

    12. [12]

      Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. ACS Catal. 2016, 6, 6692.  doi: 10.1021/acscatal.6b01956

    13. [13]

      Huang, Z.-D.; Ding, R.; Wang, P.; Xu, Y.-H.; Loh, T.-P. Chem. Commun. 2016, 52, 5609.  doi: 10.1039/C6CC00713A

    14. [14]

      Scharfbier, J.; Oestreich, M. Synlett 2016, 27, 1274.  doi: 10.1055/s-0035-1561407

    15. [15]

      Xue, W.; Qu, Z.-W.; Grimme, S.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 14222.  doi: 10.1021/jacs.6b09596

    16. [16]

      Xue, W.; Oestreich, M. Angew. Chem. Int. Ed. 2017, 56, 11649.  doi: 10.1002/anie.201706611

    17. [17]

      Scharfbier, J.; Hazrati, H.; Irran, E.; Oestreich, M. Org. Lett. 2017, 19, 6562.  doi: 10.1021/acs.orglett.7b03279

    18. [18]

      Okuda, Y.; Sato, M.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1983, 24, 2015.  doi: 10.1016/S0040-4039(00)81831-6

    19. [19]

      Xue, W.; Shishido, R.; Oestreich, M. Angew. Chem. Int. Ed. 2018, 57, 12141.  doi: 10.1002/anie.201807640

    20. [20]

      Oestreich, M.; Auer, G. Adv. Synth. Catal. 2005, 347, 637.  doi: 10.1002/adsc.200404381

    21. [21]

      Chu, C. K.; Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2016, 138, 6404.  doi: 10.1021/jacs.6b03465

    22. [22]

      Zhang, L.; Oestreich, M. Org. Lett. 2018, 20, 8061.  doi: 10.1021/acs.orglett.8b03714

    23. [23]

      (a) Awell, A.; Bokermann, G. C. US 3772347, 1973.
      (b) Matsumoto, H.; Nagashima, S.; Yoshihiro, K.; Nagai, Y. J. Organomet. Chem. 1975, 88, C1.
      (c) Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc., 2008, 130, 15982.
      (d) Yamamoto, Y.; Matsubara, H.; Murakami, K.; Yorimitsu, H.; Osuka, A. Chem. Asian J. 2015, 10, 219.

    24. [24]

      Trost, B. M.; Yoshida, J. Tetrahedron Lett. 1983, 24, 4895.  doi: 10.1016/S0040-4039(01)99804-1

    25. [25]

      Yamamoto, E.; Ukigai, S.; Ito, H. Synlett 2017, 28, 2460.  doi: 10.1055/s-0036-1590835

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

Metrics
  • PDF Downloads(72)
  • Abstract views(2112)
  • HTML views(554)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return