Citation: Gu Yingchun, Huang You. Tributylphosphine Catalyzed Cross Rauhut-Currier Reaction of Chalcones and Acrylates[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2251-2256. doi: 10.6023/cjoc201904017 shu

Tributylphosphine Catalyzed Cross Rauhut-Currier Reaction of Chalcones and Acrylates

  • Corresponding author: Huang You, hyou@nankai.edu.cn
  • Received Date: 8 April 2019
    Revised Date: 4 May 2019
    Available Online: 15 August 2019

    Fund Project: the National Natural Science Foundation of China 21472097the National Natural Science Foundation of China 21672109the National Natural Science Foundation of China 21871148the Natural Science Foundation of Tianjin City 15JCYBJC20000Project supported by the National Natural Science Foundation of China (Nos. 21672109, 21871148, 21472097) and the Natural Science Foundation of Tianjin City (No. 15JCYBJC20000)

Figures(1)

  • Rauhut-Currier (RC) reaction is an effective atom-economic method to construct C-C bond. However, the application of this reaction is limited by the lack of selectivity. Herein, an efficient intermolecular cross Rauhut-Currier reaction between chalcones and acrylates in the presence of the tributylphosphine catalyst was developed, the reactions were carried out in mild conditions, and performed well with a series of substrates, delivering the desired products with acceptable to good yields.
  • 加载中
    1. [1]

      (a) Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
      (b) Guo, H.; Fan, Y.-C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.

    2. [2]

      Rauhut, M.; Currier, H. US 3074999, 1963[Chem. Abstr. 1963, 58, 1124a].

    3. [3]

      (a) Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009, 65, 4069.
      (b) Xie, P.; Huang, Y. Eur. J. Org. Chem. 2013, 6213.

    4. [4]

      Morita, K.; Kobayashi, T. Bull. Chem. Soc. Jpn. 1969, 42, 2732.  doi: 10.1246/bcsj.42.2732

    5. [5]

      McClure, J. D. J. Org. Chem. 1970, 35, 3045.  doi: 10.1021/jo00834a039

    6. [6]

      (a) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 2402.
      (b) Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404.

    7. [7]

      (a) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256.
      (b) Gong, J.-J.; Li, T.-Z.; Pan, K.; Wu, X.-Y. Chem. Commun. 2011, 47, 1491.
      (c) Zhang, X.-N.; Shi, M. Eur. J. Org. Chem. 2012, 6271.
      (d) Takizawa, S.; Tue, M. N. N.; Grossmann, A.; Enders, D.; Sasai, H. Angew. Chem., Int. Ed. 2012, 51, 5423.
      (e) Su, X.; Zhou, W.; Li, Y.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 6874.
      (d) Jin, H.; Zhang, Q.; Li, E.; Jia, P.; Li, N.; Huang, Y. Org. Biomol. Chem. 2017, 15, 7097.

    8. [8]

      Dong, X.; Liang, L.; Li, E.; Huang, Y. Angew. Chem., Int. Ed. 2015, 54, 1621.  doi: 10.1002/anie.201409744

    9. [9]

      Zhou, W.; Su, X.; Tao, M.; Zhu, C.; Zhao, Q.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 14853.  doi: 10.1002/anie.201508108

    10. [10]

      (a) Zhao, Q.-Y.; Pei, C.-K.; Guan, X.-Y.; Shi, M. Adv. Synth. Catal. 2011, 353, 1973.
      (b) Zhou, W.; Chen, P.; Tao, M.; Su, X.; Zhao, Q.; Zhang, J. Chem. Commun. 2016, 52, 7612.
      (c) Qin, C.; Liu, Y.; Yu, Y.; Fu, Y.; Li, H.; Wang, W. Org. Lett. 2018, 20, 1304.

    11. [11]

      (a) Xie, P.; Huang, Y.; Lai, W.; Meng, X.; Chen, R. Org. Biomol. Chem. 2011, 9, 6707.
      (b) Ma, J.; Xie, P.; Hu, C.; Huang, Y.; Chen, R. Chem.-Eur. J. 2011, 17, 7418.
      (c) Hu, C.; Geng, Z.; Ma, J.; Huang, Y.; Chen, R. Chem.-Asian J. 2012, 7, 2032.
      (d) Hu, C.; Zhang, Q.; Huang, Y. Chem.-Asian J. 2013, 8, 1981.

  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    18. [18]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

Metrics
  • PDF Downloads(4)
  • Abstract views(709)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return