Citation: Liu Quanyao, Shi Lei, Liu Ning. Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2882-2891. doi: 10.6023/cjoc201903030 shu

Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine

  • Corresponding author: Liu Ning, ningliu@shzu.edu.cn
  • Received Date: 16 March 2018
    Revised Date: 17 May 2019
    Available Online: 3 October 2019

Figures(8)

  • A series of carboxyl group or hydroxyl group functionalized organocatalysts were synthesized and applied in three component reaction of carbon dioxide with epoxide, and aryl amines for the synthesis of 3-aryl-2-oxazolidinones. The method allows the reaction to proceed smoothly in the mild reaction conditions, together with excellent substrates scope of epoxides and aryl amines. The control experiments suggest that the cyclic carbonates are formed by the coupling of epoxides with carbon dioxide, which further react with the amino alcohol generated from epoxides and aryl amines, finally resulting in the desired products.
  • 加载中
    1. [1]

      (a) Niemi, T.; Repo, T. Eur. J. Org. Chem. 2019, 1180.
      (b) Chellat, M. F.; Raguž, L.; Riedl, R. Angew. Chem., Int. Ed. 2016, 55, 6600.
      (c) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Alakurtti, S.; Rantala, E.; Repo, T. Chem.-Eur. J. 2014, 20, 8867.
      (d) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885.

    2. [2]

      (a) Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900.
      (b) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450.

    3. [3]

      (a) Kayaki, Y.; Mori, N.; Ikariya, T. Tetrahedron Lett. 2009, 50, 6491.
      (b) Yamashita, K.; Hase, S.; Kayaki, Y.; Ikariya, T. Org. Lett. 2015, 17, 2334.

    4. [4]

      (a) Wang, X.; Gao, W.-Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y.-S.; Li, Z.; Aguila, B.; Ma, S. Chem. Commun. 2018, 54, 1170.
      (b) Dabral, S.; Schaub, T. Adv. Synth. Catal. 2019, 361, 223.
      (c) Adhikari, D.; Miller, A. W.; Baik, M.-H.; Nguyen, S. T. Chem. Sci. 2015, 6, 1293.
      (d) Liu, A.-H.; Dang, Y.-L.; Zhou, H.; Zhang, J.-J.; Lu, X.-B. ChemCatChem 2018, 10, 2686.
      (e) Seayad, J.; Seayad, A. M.; Ng, J. K. P.; Chai, C. L. L. ChemCatChem 2012, 4, 774.
      (f) Saptal, V. B.; Bhanage, B. M. ChemSusChem 2016, 9, 1980.
      (g) Liu, X.-F.; Wang, M.-Y.; He, L.-N. Curr. Org. Chem. 2017, 21, 698.
      (h) Phung, C.; Ulrich, R. M.; Ibrahim, M.; Tighe, N. T. G.; Lieberman, D. L.; Pinhas, A. R. Green Chem. 2011, 13, 3224.
      (i) Yang, Z.-Z.; Li, Y.-N.; Wei, Y.-Y.; He, L.-N. Green Chem. 2011, 13, 2351.
      (j) Chen, Y.; Luo, R.; Yang, Z.; Zhou, X.; Ji, H. Sustainable Energy Fuels 2018, 2, 125.
      (k) Kathalikkattil, A. C.; Tharun, J.; Roshan, R.; Soek, H.-G.; Park, D.-W. Appl. Catal., A 2012, 447-448, 107.
      (l) Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.

    5. [5]

      (a) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
      (b) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
      (c) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190.
      (d) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.
      (e) Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Org. Lett. 2012, 14, 4874.

    6. [6]

      (a) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
      (b) Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. ACS Catal. 2017, 7, 2652.
      (c) Chang, Z.; Jing, X.; He, C.; Liu, X.; Duan, C. ACS Catal. 2018, 8, 1384.
      (d) Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.; Fan, M.; Wang, J. ACS Sustainable Chem. Eng. 2016, 4, 5553.
      (e) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem., Int. Ed. 2015, 54, 5399.
      (f) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914.
      (g) Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. ChemSusChem 2017, 10, 1210.
      (h) Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B. Green Chem. 2015, 17, 1219.
      (i) Zhao, D.; Liu, X.-H.; Zhu, C.; Kang, Y.-S.; Wang, P.; Shi, Z.; Lu, Y.; Sun, W.-Y. ChemCatChem 2017, 9, 4598.
      (j) Yang, H.; Zhang, X.; Zhang, G.; Fei, H. Chem. Commun. 2018, 54, 4469.

    7. [7]

      (a) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
      (b) Rintjema, J.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Chem.-Eur. J. 2015, 21, 10754.
      (c) Lee, Y.; Choi, J.; Kim, H. Org. Lett. 2018, 20, 5036.

    8. [8]

    9. [9]

      (a) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Hiltunen, O.-M.; Salo, V.; Rautiainen, S.; Räisänen, M. T.; Repo, T. Chem.-Eur. J. 2016, 22, 10355.
      (b) Mei, C.; Zhao, Y.; Chen, Q.; Cao, C.; Pang, G.; Shi, Y. ChemCatChem 2018, 10, 3057-3068.

    10. [10]

      (a) Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang, L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014, 356, 3125.
      (b) Zhang, L.; Fu, X.; Gao, G. ChemCatChem 2011, 3, 1359.
      (c) Selva, M.; Fabris, M.; Lucchini, V.; Perosa, A.; Noè, M. Org. Biomol. Chem. 2010, 8, 5187.
      (d) Lang, X.-D.; Li, Z.-M.; He, L.-N. Catal. Today 2019, 324, 167.
      (e) Hang, G.; Nian-Fa, Y.; Guo-Jun, D.; Guang-Yi, X. Chem. Lett. 2009, 38, 584.
      (f) Zhang, Y.; Wang, B.; Elageed, E. H. M.; Qin, L.; Ni, B.; Liu, X.; Gao, G. ACS Macro Lett. 2016, 5, 435.

    11. [11]

      Wang, B.; Elageed, E. H. M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. ChemCatChem 2014, 6, 278.  doi: 10.1002/cctc.201300801

    12. [12]

      Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. J. CO2 Util. 2018, 27, 381.  doi: 10.1016/j.jcou.2018.08.013

    13. [13]

      Wang, B.; Luo, Z.; Elageed, E. H. M.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830.  doi: 10.1002/cctc.201500928

    14. [14]

      Lv, M.; Wang, P.; Yuan, D.; Yao, Y. ChemCatChem 2017, 9, 4451.  doi: 10.1002/cctc.201700594

    15. [15]

      Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.  doi: 10.1039/C6GC02934E

    16. [16]

      Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119.  doi: 10.1007/s10562-017-2217-z

    17. [17]

      Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. ChemCatChem 2016, 8, 2466.  doi: 10.1002/cctc.201600534

    18. [18]

      Chen, F.; Li, M.; Wang, J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.  doi: 10.1016/j.jcou.2018.09.025

    19. [19]

      (a) Wang, L.; Liu, N.; Dai, B.; Hu, H. Eur. J. Org. Chem. 2014, 2014, 6493.
      (b) Liu, Q.-Y.; Shi, L.; Liu, N. J. Chem. Res. 2019, 43, 248.

    20. [20]

      Wang, P.; Qin, J.; Yuan, D.; Wang, Y.; Yao, Y. ChemCatChem 2015, 7, 1145.  doi: 10.1002/cctc.201403015

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(8)
  • Abstract views(1373)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return