Citation: Liu Quanyao, Shi Lei, Liu Ning. Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine[J]. Chinese Journal of Organic Chemistry, ;2019, 39(10): 2882-2891. doi: 10.6023/cjoc201903030 shu

Pyridine Bridged Organocatalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Terminal Epoxide, and Aryl Amine

  • Corresponding author: Liu Ning, ningliu@shzu.edu.cn
  • Received Date: 16 March 2018
    Revised Date: 17 May 2019
    Available Online: 3 October 2019

Figures(8)

  • A series of carboxyl group or hydroxyl group functionalized organocatalysts were synthesized and applied in three component reaction of carbon dioxide with epoxide, and aryl amines for the synthesis of 3-aryl-2-oxazolidinones. The method allows the reaction to proceed smoothly in the mild reaction conditions, together with excellent substrates scope of epoxides and aryl amines. The control experiments suggest that the cyclic carbonates are formed by the coupling of epoxides with carbon dioxide, which further react with the amino alcohol generated from epoxides and aryl amines, finally resulting in the desired products.
  • 加载中
    1. [1]

      (a) Niemi, T.; Repo, T. Eur. J. Org. Chem. 2019, 1180.
      (b) Chellat, M. F.; Raguž, L.; Riedl, R. Angew. Chem., Int. Ed. 2016, 55, 6600.
      (c) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Alakurtti, S.; Rantala, E.; Repo, T. Chem.-Eur. J. 2014, 20, 8867.
      (d) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885.

    2. [2]

      (a) Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900.
      (b) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450.

    3. [3]

      (a) Kayaki, Y.; Mori, N.; Ikariya, T. Tetrahedron Lett. 2009, 50, 6491.
      (b) Yamashita, K.; Hase, S.; Kayaki, Y.; Ikariya, T. Org. Lett. 2015, 17, 2334.

    4. [4]

      (a) Wang, X.; Gao, W.-Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y.-S.; Li, Z.; Aguila, B.; Ma, S. Chem. Commun. 2018, 54, 1170.
      (b) Dabral, S.; Schaub, T. Adv. Synth. Catal. 2019, 361, 223.
      (c) Adhikari, D.; Miller, A. W.; Baik, M.-H.; Nguyen, S. T. Chem. Sci. 2015, 6, 1293.
      (d) Liu, A.-H.; Dang, Y.-L.; Zhou, H.; Zhang, J.-J.; Lu, X.-B. ChemCatChem 2018, 10, 2686.
      (e) Seayad, J.; Seayad, A. M.; Ng, J. K. P.; Chai, C. L. L. ChemCatChem 2012, 4, 774.
      (f) Saptal, V. B.; Bhanage, B. M. ChemSusChem 2016, 9, 1980.
      (g) Liu, X.-F.; Wang, M.-Y.; He, L.-N. Curr. Org. Chem. 2017, 21, 698.
      (h) Phung, C.; Ulrich, R. M.; Ibrahim, M.; Tighe, N. T. G.; Lieberman, D. L.; Pinhas, A. R. Green Chem. 2011, 13, 3224.
      (i) Yang, Z.-Z.; Li, Y.-N.; Wei, Y.-Y.; He, L.-N. Green Chem. 2011, 13, 2351.
      (j) Chen, Y.; Luo, R.; Yang, Z.; Zhou, X.; Ji, H. Sustainable Energy Fuels 2018, 2, 125.
      (k) Kathalikkattil, A. C.; Tharun, J.; Roshan, R.; Soek, H.-G.; Park, D.-W. Appl. Catal., A 2012, 447-448, 107.
      (l) Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.

    5. [5]

      (a) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
      (b) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
      (c) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190.
      (d) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.
      (e) Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Org. Lett. 2012, 14, 4874.

    6. [6]

      (a) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
      (b) Brunel, P.; Monot, J.; Kefalidis, C. E.; Maron, L.; Martin-Vaca, B.; Bourissou, D. ACS Catal. 2017, 7, 2652.
      (c) Chang, Z.; Jing, X.; He, C.; Liu, X.; Duan, C. ACS Catal. 2018, 8, 1384.
      (d) Zhao, Y.; Qiu, J.; Tian, L.; Li, Z.; Fan, M.; Wang, J. ACS Sustainable Chem. Eng. 2016, 4, 5553.
      (e) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem., Int. Ed. 2015, 54, 5399.
      (f) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914.
      (g) Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. ChemSusChem 2017, 10, 1210.
      (h) Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B. Green Chem. 2015, 17, 1219.
      (i) Zhao, D.; Liu, X.-H.; Zhu, C.; Kang, Y.-S.; Wang, P.; Shi, Z.; Lu, Y.; Sun, W.-Y. ChemCatChem 2017, 9, 4598.
      (j) Yang, H.; Zhang, X.; Zhang, G.; Fei, H. Chem. Commun. 2018, 54, 4469.

    7. [7]

      (a) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2016, 55, 3972.
      (b) Rintjema, J.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Chem.-Eur. J. 2015, 21, 10754.
      (c) Lee, Y.; Choi, J.; Kim, H. Org. Lett. 2018, 20, 5036.

    8. [8]

    9. [9]

      (a) Niemi, T.; Perea-Buceta, J. E.; Fernández, I.; Hiltunen, O.-M.; Salo, V.; Rautiainen, S.; Räisänen, M. T.; Repo, T. Chem.-Eur. J. 2016, 22, 10355.
      (b) Mei, C.; Zhao, Y.; Chen, Q.; Cao, C.; Pang, G.; Shi, Y. ChemCatChem 2018, 10, 3057-3068.

    10. [10]

      (a) Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang, L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014, 356, 3125.
      (b) Zhang, L.; Fu, X.; Gao, G. ChemCatChem 2011, 3, 1359.
      (c) Selva, M.; Fabris, M.; Lucchini, V.; Perosa, A.; Noè, M. Org. Biomol. Chem. 2010, 8, 5187.
      (d) Lang, X.-D.; Li, Z.-M.; He, L.-N. Catal. Today 2019, 324, 167.
      (e) Hang, G.; Nian-Fa, Y.; Guo-Jun, D.; Guang-Yi, X. Chem. Lett. 2009, 38, 584.
      (f) Zhang, Y.; Wang, B.; Elageed, E. H. M.; Qin, L.; Ni, B.; Liu, X.; Gao, G. ACS Macro Lett. 2016, 5, 435.

    11. [11]

      Wang, B.; Elageed, E. H. M.; Zhang, D.; Yang, S.; Wu, S.; Zhang, G.; Gao, G. ChemCatChem 2014, 6, 278.  doi: 10.1002/cctc.201300801

    12. [12]

      Hosseinian, A.; Ahmadi, S.; Mohammadi, R.; Monfared, A.; Rahmani, Z. J. CO2 Util. 2018, 27, 381.  doi: 10.1016/j.jcou.2018.08.013

    13. [13]

      Wang, B.; Luo, Z.; Elageed, E. H. M.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830.  doi: 10.1002/cctc.201500928

    14. [14]

      Lv, M.; Wang, P.; Yuan, D.; Yao, Y. ChemCatChem 2017, 9, 4451.  doi: 10.1002/cctc.201700594

    15. [15]

      Seo, U. R.; Chung, Y. K. Green Chem. 2017, 19, 803.  doi: 10.1039/C6GC02934E

    16. [16]

      Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119.  doi: 10.1007/s10562-017-2217-z

    17. [17]

      Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. ChemCatChem 2016, 8, 2466.  doi: 10.1002/cctc.201600534

    18. [18]

      Chen, F.; Li, M.; Wang, J.; Dai, B.; Liu, N. J. CO2 Util. 2018, 28, 181.  doi: 10.1016/j.jcou.2018.09.025

    19. [19]

      (a) Wang, L.; Liu, N.; Dai, B.; Hu, H. Eur. J. Org. Chem. 2014, 2014, 6493.
      (b) Liu, Q.-Y.; Shi, L.; Liu, N. J. Chem. Res. 2019, 43, 248.

    20. [20]

      Wang, P.; Qin, J.; Yuan, D.; Wang, Y.; Yao, Y. ChemCatChem 2015, 7, 1145.  doi: 10.1002/cctc.201403015

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(5)
  • Abstract views(1266)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return