Citation: Zhang Xiaopeng, Zhu Yanjie, Zhu Yisong, Li Zhengwei, Zhang Guisheng. Advances in Synthesis of 2, 3-Dihydroquinazolin-4(1H)-ones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(9): 2392-2402. doi: 10.6023/cjoc201903025 shu

Advances in Synthesis of 2, 3-Dihydroquinazolin-4(1H)-ones

  • Corresponding author: Zhang Xiaopeng, zhangxiaopengv@sina.com
  • Received Date: 14 March 2019
    Revised Date: 11 April 2019
    Available Online: 26 September 2019

    Fund Project: the National Natural Science Foundation of China U1604285the National Natural Science Foundation of China 21772033the National Natural Science Foundation of China (Nos. 21772033, U1604285) and the Program of Introducing Talents of Discipline to Universities (111 Project, No. D17007)the Program of Introducing Talents of Discipline to Universities 111 Project, No. D17007

Figures(19)

  • 2, 3-Dihydroquinazolin-4(1H)-one compounds are an important class of nitrogen-containing fused heterocycles, which possess a wide range of pharmacological and biological activities and have important applications in the fields of synthesis and research & development of drugs. Therefore, its synthetic methods have also attracted considerable attention. In this paper, the main advances in the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones and their proposed reaction mechanisms from the raw materials such as o-aminobenzamides, isatoic anhydrides, o-nitrobenzamides, o-azidobenzamide, o-bromo-benzamide, o-bromobenzonitrile, o-aminobenzoic acids, o-aminobenzonitrile, o-amino-N-(propa-1, 2-dienyl)benzamides, and N-alkyl anilines were introduced and reviewed, respectively. Finally, the synthesis of these compounds was summarized and the prospect of their development was prospected.
  • 加载中
    1. [1]

      Kamble, A. A.; Kamble, R. R.; Chougala, L. S.; Kadadevarmath, J. S.; Maidur, S. R.; Patil, P. S.; Kumbar, M. N.; Marganakop, S. B. ChemistrySelect 2017, 2, 6882.  doi: 10.1002/slct.201700498

    2. [2]

      Kamal, A.; Bharathi, E. V.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Reddy, M. K.; Viswanath, A.; Reddy, T. L.; Shaik, T. B.; Pushpavalli, S. N. C. V. L.; Bhadra, M. P. Eur. J. Med. Chem. 2011, 46, 691.  doi: 10.1016/j.ejmech.2010.12.004

    3. [3]

      Chinigo, G. M.; Paige, M.; Grindrod, S.; Hamel, E.; Dakshana- murthy, S.; Chruszcz, M.; Minor, W.; Brown, M. L. J. Med. Chem. 2008, 51, 4620.  doi: 10.1021/jm800271c

    4. [4]

      Roopan, S. M.; Khan, F. N.; Jin, J. S.; Kumar, R. S. Res. Chem. Intermed. 2011, 37, 919.  doi: 10.1007/s11164-011-0301-3

    5. [5]

      Liao, C. H.; Pan, S. L.; Guh, J. H.; Chang, Y. L.; Pai, H. C.; Lin, C. H.; Teng, C. M. Carcinogenesis 2005, 26, 968.  doi: 10.1093/carcin/bgi041

    6. [6]

      Hour, M. J.; Huang, L. J.; Kuo, S. C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K. H. J. Med. Chem. 2000, 43, 4479.  doi: 10.1021/jm000151c

    7. [7]

      Li, X. Q.; Wang, R. T.; Liu, Y.; Liu, Y.; Zheng, H.; Feng, Y. B.; Zhao, N.; Geng, H. B.; Zhang, W. Z.; Wen, A. D. BMC Pharmacol. Toxicol. 2017, 18, 73.  doi: 10.1186/s40360-017-0178-x

    8. [8]

      Ibrahim, S. M.; Abo-Kul, M.; Soltan, M. K.; Barakat, W.; Helal, A. S. Med. Chem. 2014, 4, 351.

    9. [9]

      Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am. Chem. Soc. 2008, 130, 15786.  doi: 10.1021/ja8071034

    10. [10]

      Hemalatha, K.; Madhumitha, G.; Vasavi, C. S.; Munusami, P. J. Photochem. Photobiol. B 2015, 143, 139.  doi: 10.1016/j.jphotobiol.2014.12.028

    11. [11]

      Yu, H.; Jin, H. W.; Gong, W. Z.; Wang, Z. L.; Liang, H. P. Molecules 2013, 18, 1826.  doi: 10.3390/molecules18021826

    12. [12]

      El-Sabbagh, O. I.; Ibrahim, S. M.; Baraka, M. M.; Kothayer, H. Arch. Pharm. Chem. Life Sci. 2010, 343, 274.
       

    13. [13]

      Zhang, J.; Cheng, P.; Ma, Y. M.; Liu, J.; Miao, Z.; Ren, D. C.; Fan, C.; Liang, M.; Liu, L. Tetrahedron Lett. 2016, 57, 5271.  doi: 10.1016/j.tetlet.2016.10.047

    14. [14]

      Mohammadi, A. A.; Rohi, H.; Soorkic, A. A. J. Heterocycl. Chem. 2013, 50, 1129.

    15. [15]

      Xu, Z. H.; Zhang, Y. P.; Fu, H. C.; Zhong, H. M.; Hong, K.; Zhu, W. M. Bioorg. Med. Chem. Lett. 2011, 21, 4005.  doi: 10.1016/j.bmcl.2011.05.002

    16. [16]

      Ferrando, C.; Foy, J. M.; Pratt, C. N. F. W.; Purvis, J. R. J. Pharm. Pharmacol. 1981, 33, 219.  doi: 10.1111/j.2042-7158.1981.tb13761.x

    17. [17]

      Steinmuller, S. R.; Puschett, J. B. Kidney Int. 1972, 1, 169.  doi: 10.1038/ki.1972.24

    18. [18]

      Wang, Z. W.; Wang, M. X.; Yao, X.; Li, Y.; Tan, J.; Wang, L. Z.; Qiao, W. T.; Geng, Y. Q.; , Liu, Y. X.; Wang, Q. M. Eur. J. Med. Chem. 2012, 53, 275.  doi: 10.1016/j.ejmech.2012.04.010

    19. [19]

      Kothayer, H.; Ibrahim, S. M.; Soltan, M. K.; Rezq, S.; Mahmoud, S. S. Drug Dev. Res. 2019, 80, 343.  doi: 10.1002/ddr.21506

    20. [20]

      Derbyshire, E. R.; Min, J.; Guiguemde, W. A.; Clark, J. A.; Connelly, M. C.; Magalhães, A. D.; Guy, R. K.; Clardy, J. Antimicrob. Agents Ch. 2014, 58, 1516.  doi: 10.1128/AAC.02148-13

    21. [21]

      Hemalatha, K.; Madhumitha, G. J. Lumin. 2016, 178, 163.  doi: 10.1016/j.jlumin.2016.05.041

    22. [22]

      Singh, M.; Raghav, N. Bioorg. Chem. 2015, 59, 12.  doi: 10.1016/j.bioorg.2015.01.005

    23. [23]

      Sultana, N.; Sarfraz, M.; Tanoli, S. T.; Akram, M. S.; Sadiq, A.; Rashid, U.; Tariq, M. I. Bioorg. Chem. 2017, 72, 256.  doi: 10.1016/j.bioorg.2017.04.009

    24. [24]

      Sarfraz, M.; Sultana, N.; Rashid, U.; Akram, M. S.; Sadiq, A.; Tariq, M. I. Bioorg. Chem. 2017, 70, 237.  doi: 10.1016/j.bioorg.2017.01.004

    25. [25]

      Xing, J. H.; Yang, L. Y.; Yang, Y. F.; Zhao, L. L.; Wei, Q. Q.; Zhang, J.; Zhou, J. P.; Zhang, H. B. Eur. J. Med. Chem. 2017, 125, 411.  doi: 10.1016/j.ejmech.2016.09.055

    26. [26]

      Birch, H. L.; Buckley, G. M.; Davies, N.; Dyke, H. J.; Frost, E. J.; Gilbert, P. J.; Hannah, D. R.; Haughan, A. F.; Madigan, M. J.; Morgan, T.; Pitt, W. R.; Ratcliffe, A. J.; Ray, N. C.; Richard, M. D.; Sharpe, A.; Taylor, A. J.; Whitworth, J. M.; Williams, S. C. Bioorg. Med. Chem. Lett. 2005, 15, 5335.  doi: 10.1016/j.bmcl.2005.06.108

    27. [27]

      Katoh, T.; Takai, T.; Yukawa, T.; Tsukamoto, T.; Watanabe, E.; Mototani, H.; Arita, T.; Hayashi, H.; Nakagawa, H.; Klein, M. G.; Zou, H.; Sang, B. C.; Snell, G.; Nakada, Y. Bioorg. Med. Chem. 2016, 24, 2466.  doi: 10.1016/j.bmc.2016.04.008

    28. [28]

      Zhang, H.; Liu, H.; Luo, X.; Wang, Y. X.; Liu, Y.; Jin, H. W.; Liu, Z. M.; Yang, W.; Yu, P. L.; Zhang, L. R.; Zhang, L. H. Eur. J. Med. Chem. 2018, 152, 235.  doi: 10.1016/j.ejmech.2018.04.045

    29. [29]

      Meinwald, Y. C.; Meinwald, J.; Eisner, T. Science 1966, 154, 390.  doi: 10.1126/science.154.3747.390

    30. [30]

      Wang, X.; Yin, J.; Shi, L.; Zhang, G. P.; Song, B. A. Eur. J. Med. Chem. 2014, 77, 65.  doi: 10.1016/j.ejmech.2014.02.053

    31. [31]

      Giri, R.; Lam, J. K.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 686.  doi: 10.1021/ja9077705

    32. [32]

      Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem. Soc. 2015, 137, 12369.  doi: 10.1021/jacs.5b07726

    33. [33]

      Akyüz, G.; Menteşe, E.; Emirik, M.; Baltaş, N. Bioorg. Chem. 2018, 80, 121.  doi: 10.1016/j.bioorg.2018.06.011

    34. [34]

      Perreault, S.; Chandrasekhar, J.; Cui, Z. H.; Evarts, J.; Hao, J.; Kaplan, J. A.; Kashishian, A.; Keegan, K. S.; Kenney, T.; Koditek, D.; Lad, L.; Lepist, E. I.; McGrath, M. E.; Patel, L.; Phillips, B.; Therrien, J.; Treiberg, J.; Yahiaoui, A.; Phillips, G. J. Med. Chem. 2017, 60, 1555.  doi: 10.1021/acs.jmedchem.6b01821

    35. [35]

      Badolato, M.; Aiello, F.; Neamati, N. RSC Adv. 2018, 8, 20894.  doi: 10.1039/C8RA02827C

    36. [36]

      Cheng, X.; Vellalath, S.; Goddard, R.; List, Benjamin. J. Am. Chem. Soc. 2008, 130, 15786.  doi: 10.1021/ja8071034

    37. [37]

      Deng, T.; Wang, H. J.; Cai, C. J. Fluorine Chem. 2015, 169, 72.  doi: 10.1016/j.jfluchem.2014.11.008

    38. [38]

      Tran, P. H.; Bui, T. P. T.; Lam, X. Q. B.; Nguyen, X. T. T. RSC Adv. 2018, 8, 36392.  doi: 10.1039/C8RA07256F

    39. [39]

      Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P. M. S. J. Org. Chem. 2012, 77, 929.  doi: 10.1021/jo2020856

    40. [40]

      Sriramoju, V.; Kurva, S.; Chong, Y.; Madabhushi, S. New J. Chem. 2018, 42, 3188.  doi: 10.1039/C7NJ04939K

    41. [41]

      Yamaguchi, K.; Kawaguchi, S.; Sonoda, M.; Tanimori, S.; Ogawa, A. Tetrahedron Lett. 2017, 58, 4043.  doi: 10.1016/j.tetlet.2017.09.001

    42. [42]

      Patil, N. T.; Lakshmi, P. G. V. V.; Singh, V. Eur. J. Org. Chem. 2010, 4719.
       

    43. [43]

      Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2010, 75, 1277.  doi: 10.1021/jo902293f

    44. [44]

      Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C. A.; Heilmann, J.; Decker, M. J. Med. Chem. 2016, 59, 2067.  doi: 10.1021/acs.jmedchem.5b01674

    45. [45]

      Noel, R.; Gupta, N.; Pons, V.; Goudet, A.; Garcia-Castillo, M. D.; Michau, A.; Martinez, J.; Buisson, D. A.; Johannes, L.; Gillet, D.; Barbier, J.; Cintrat, J. C. J. Med. Chem. 2013, 56, 3404.  doi: 10.1021/jm4002346

    46. [46]

      Razavi, N.; Akhlaghinia, B. New J. Chem. 2016, 40, 447.  doi: 10.1039/C5NJ02123E

    47. [47]

      Zhang, J.; Ren, D. C.; Ma, Y. M.; Wang, W. T.; Wu, H. Tetrahedron 2014, 70, 5274.  doi: 10.1016/j.tet.2014.05.059

    48. [48]

      Carney, D. W.; Nelson, C. D. S.; Ferris, B. D.; Stevens, J. P.; Lipovsky, A.; Kazakov, T.; DiMaio, D.; Atwood, W. J.; Sello, J. K. Bioorg. Med. Chem. 2014, 22, 4836.  doi: 10.1016/j.bmc.2014.06.053

    49. [49]

      Manivannan, E.; Chaturvedi, S. C. Bioorg. Med. Chem. 2012, 20, 7119.  doi: 10.1016/j.bmc.2012.09.069

    50. [50]

      Jacob, E. D.; Mathew, L.; Thomas, B. J. Chem. Sci. 2007, 119, 47.  doi: 10.1007/s12039-007-0008-6

    51. [51]

      Zhuang, Q. Y.; Fu, Y. C.; Tang, D.; Zha, Y. Y.; Rong, L. C.; Tu, S. J. Chin. J. Org. Chem. 2010, 30, 1405 (in Chinese).
       

    52. [52]

      Darras, F. H.; Pockes, S.; Huang, G. Z.; Wehle, S.; Strasser, A.; Wittmann, H. J.; Nimczick, M.; Sotriffer, C. A.; Decker, M. ACS Chem. Neurosci. 2014, 5, 225.  doi: 10.1021/cn4002126

    53. [53]

      Huang, G. Z.; Roos, D.; Stadtmüller, P.; Decker, M. Tetrahedron Lett. 2014, 55, 3607.  doi: 10.1016/j.tetlet.2014.04.120

    54. [54]

      Rezaei, N.; Sheikhi, E.; Ranjbar, P. R. Synlett 2018, 29, 912.  doi: 10.1055/s-0036-1591544

    55. [55]

      Azimi, S. B.; Azizian, J. Tetrahedron Lett. 2016, 57, 181.  doi: 10.1016/j.tetlet.2015.11.090

    56. [56]

      Bunce, R. A.; Nammalwar, B. J. Heterocycl. Chem. 2011, 48, 991.  doi: 10.1002/jhet.672

    57. [57]

      Shi, D. Q.; Rong, L. C.; Wang, J. X.; Zhuang, Q. Y.; Wang, X. D.; Hu, H. W. Tetrahedron Lett. 2003, 44, 3199.  doi: 10.1016/S0040-4039(03)00449-0

    58. [58]

      Cai, G. P.; Xu, X. L.; Li, Z. F.; Weber, W. P.; Lu, P. J. Heterocycl. Chem. 2002, 39, 1271.  doi: 10.1002/jhet.5570390623

    59. [59]

      Su, W. K.; Yang, B. B. Aust. J. Chem. 2002, 55, 695.  doi: 10.1071/CH02117

    60. [60]

      Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. J. Org. Chem. 2005, 70, 6941.  doi: 10.1021/jo050450f

    61. [61]

      Su, W. K.; Yang, B. B. J. Chem. Res., Synop. 2002, 604.

    62. [62]

      Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.  doi: 10.1021/acs.joc.6b00599

    63. [63]

      Liu, Z. B.; Zeng, L. Y.; Li, Chao.; Yang, F. B.; Qiu, F. S.; Liu, S. W.; Xi, B. M. Molecules 2018, 23, 2325.  doi: 10.3390/molecules23092325

    64. [64]

      Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Org. Lett. 2013, 15, 258.  doi: 10.1021/ol303073b

    65. [65]

      Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. K. Tetrahedron 2014, 70, 7172.  doi: 10.1016/j.tet.2014.04.066

    66. [66]

      Wu, X. F.; Oschatz, S.; Block, A.; Spannenberg, A.; Langer, P. Org. Biomol. Chem. 2014, 12, 1865.  doi: 10.1039/c3ob42434k

    67. [67]

      Borase, P. N.; Thale, P. B.; Shankarling, G. S. RSC Adv. 2016, 6, 63078.  doi: 10.1039/C6RA15574J

    68. [68]

      Safaei, H. R.; Shekouhy, M.; Ghorbanzadeh, S. ChemistrySelect 2018, 3, 4750.  doi: 10.1002/slct.201800456

    69. [69]

      Zhen, B.; Jiao, Q. Z.; Zhang, Y. P.; Wu, Q.; Li, H. S.; Shi, D. X.; Li, J. R. Catal. Commun. 2013, 32, 1.  doi: 10.1016/j.catcom.2012.11.029

    70. [70]

      Chai, H. X.; Li, J. R.; Yang, L. P.; Liu, M. X.; Yang, D. L.; Zhang, Q.; Shi, D. X. Chin. J. Chem. 2014, 32, 865.  doi: 10.1002/cjoc.201400381

    71. [71]

      Tamaddon, F.; Pouramini, F. Synlett 2014, 25, 1127.  doi: 10.1055/s-0033-1340986

    72. [72]

      Zhang, L. J.; Yu, J. L.; Wang, W. L.; Li, H.; Xu, D. D.; Bi, Y. D.; Liu, F. D. Tetrahedron Lett. 2014, 55, 710.  doi: 10.1016/j.tetlet.2013.12.001

    73. [73]

      Kundu, P.; Mondal, M.; Chowdhury, C. J. Org. Chem. 2016, 81, 6596.  doi: 10.1021/acs.joc.6b01242

    74. [74]

      Zhang, X. P.; Li, Z. W.; Ding, Q. Q.; Li, X. C.; Fan, X. S.; Zhang, G. S. Adv. Synth. Catal. 2019, 361, 976.  doi: 10.1002/adsc.201801267

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    3. [3]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    15. [15]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(17)
  • Abstract views(2092)
  • HTML views(399)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return