Citation: He Wenjing, Liu Denyue, Gan Xiuhai, Zhang Jian, Liu Zhengjun, Yi Chongfen, Song Bao'an. Synthesis and Biological Activity of Novel 1, 3, 4-Thiadiazolo[3, 2-a]pyrimidinone Mesoionic Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2287-2294. doi: 10.6023/cjoc201903023 shu

Synthesis and Biological Activity of Novel 1, 3, 4-Thiadiazolo[3, 2-a]pyrimidinone Mesoionic Derivatives

  • Corresponding author: Song Bao'an, songbaoan22@yahoo.com
  • Received Date: 13 March 2019
    Revised Date: 5 April 2019
    Available Online: 16 August 2019

    Fund Project: the National Key Research and Development Program of China 2018YFD0200100Project supported by the National Key Research and Development Program of China (No. 2018YFD0200100)

Figures(2)

  • A series of 1, 3, 4-thiadiazolo[3, 2-a]pyrimidinone mesoionic derivatives were designed and synthesized with triflumezopyrim as the leading compound, and their structures were characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The preliminary biological activities indicated that the target compounds showed certain insecticidal activities at 100 μg/mL, of which the lethality rates of 2-((4-chlorobenzyl)thio)-8-((2-chlorothiazol-5-yl)methyl)-5-oxo-6-(3-(trifluoromethyl)phen-yl)-5H-[1, 3, 4]-thiadiazolo[3, 2-a]pyrimidin-8-ium-7-olate (8b) and 2-(((2-chlorothiazol-5-yl)methyl)thio)-8-((2-chlorothiazol-5-yl)methyl)-5-oxo-6-(3-(trifluoromethyl)phenyl)-5H-[1, 3, 4]thiadiazolo-[3, 2-a]pyrimidin-8-ium-7-olate (8d) against white-backed planthopper (WBPH) were 70%. Some compounds showed good antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas citri pv. citri (Xcc) at 50 μg/mL, and the inhi-bitory rates of 2-((2-(trifluoromethyl)benzyl)thio)-8-((2-chlorothiazol-5-yl)methyl)-5-oxo-6-(3-(trifluoromethyl)phenyl)-5H-[1, 3, 4]thiadiazolo[3, 2-a]pyrimidin-8-ium-7-olate (8h) to Xoo and Xoc were 70.91% and 53.34%, respectively, which were better than thiodiazole copper (47.76% and 23.25%) and bismerthiazol (66.97% and 17.24%). The inhibition rate of 2-((3-(tri-fluoromethyl)benzyl)thio)-8-((2-chlorothiazol-5-yl)methyl)-5-oxo-6-(3-(trifluoromethyl)phenyl)-5H-[1, 3, 4]thiadiazolo[3, 2-a]-pyrimidin-8-ium-7-olate (8e) to Xcc was 68.97%, which was better than thiediazole copper (35.85%) and bismerthiazol (37.53%)
  • 加载中
    1. [1]

      Earl, J. C.; Mackney, A. W. J. Chem. Soc. 1935. 899-900.  doi: 10.1039/jr9350000889

    2. [2]

      Miao, Q.; Sun, H. L. Chin. Sci. Bull. 2015, 60, 2003(in Chinese).

    3. [3]

      Ren, X. M.S. Thesis, East China Normal University, Shanghai, 2015(in Chinese).
      (任晓, 硕士论文, 华东师范大学, 上海, 2015.)

    4. [4]

      Ollis, W. D.; Ramsden, C. A. Adv. Heterocycl. Chem. 1976, 19, 1.  doi: 10.1016/S0065-2725(08)60230-5

    5. [5]

      Latthe, P. R.; Shinge, P. S.; Badami, B. V.; Patil, P. B.; Holihosur, S. N. J. Chem. Sci. 2006, 118, 249.  doi: 10.1007/BF02708284

    6. [6]

      Huisgen, R.; Gotthardt, H.; Bayer, H. O. Angew. Chem., Int Ed. 1964, 3, 136.  doi: 10.1002/anie.196401361

    7. [7]

      Gotthardt, H.; Huisgen, R.; Schaefer, F. C. Tetrahedron Lett. 1964, 10, 487.

    8. [8]

      Coburn, R. A.; Glennon, R. A. J. Pharm. Sci. 1973, 62, 1785.  doi: 10.1002/jps.2600621110

    9. [9]

      Coburn, R. A.; Carapellotti, R. A. J. Pharm. Sci. 1976, 65, 1505.  doi: 10.1002/jps.2600651022

    10. [10]

      White, E. H.; Egger, N. J. Am. Chem. Soc. 1984, 106, 3701.  doi: 10.1021/ja00324a067

    11. [11]

      Chandrasekhar, R.; Nanjan, M. J. Mini. Rev. Med. Chem. 2012, 12, 1359.

    12. [12]

      Jogul, J. J.; Badami, B. V. J. Serb. Chem. Soc. 2006, 71, 851.  doi: 10.2298/JSC0609851J

    13. [13]

      Holyoke Jr, C. W.; Zhang, W. M; Pahutski, T. F., Jr.; Lahm, G. P.; Tong, M. H. T.; Cordova, D.; Leighty, R. M. ACS Symposium Series, American Chemical Society, Washington, DC, U. S. A., 2015, pp. 365~378.

    14. [14]

      Zhang, W. M.; Holyoke, C. W.; Barry, J.; Leighty, R. M.; Cordova, D.; Vincent, D. R.; Briddell, T. A. Bioorg. Med. Chem. Lett. 2016, 26, 5444.  doi: 10.1016/j.bmcl.2016.10.031

    15. [15]

      Zhang, W. M. Acc. Chem. Res. 2017, 50, 2381.  doi: 10.1021/acs.accounts.7b00311

    16. [16]

      Holyoke Jr, C. W.; Cordova, D.; Zhang, W. M.; Barry, D. J.; Leighty, M. R.; Dietrich, F. R.; Rauh, J. J.; Pahutski, F. T. Jr.; Lahm, P. G.; Tong, T. M.-H.; Benner, A. E.; Andreassi, L. J.; Smith, M. R.; Vincent, R. D.; Christianson, A. L.; Teixeira, A. L.; Singh, V.; Hughes, A. K. Pest Manage. Sci. 2017, 73, 796.  doi: 10.1002/ps.4496

    17. [17]

      Zhang, W. M.; Holyoke Jr, C. W.; Pahutski, F. T. Jr.; Lahm, P. G.; Barry, D. J.; Cordova, D.; Leighty, M. R.; Singh, V.; Vincent, R. D.; Tong, T. M.-H.; Hughes, A. K.; McCann, F. S.; Henry, T. Y.; Xu, M.; Briddell, A. T. Bioorg. Med. Chem. Lett. 2017, 27, 16.  doi: 10.1016/j.bmcl.2016.11.042

    18. [18]

      Zhang, W. M.; Holyoke, W. C. Jr.; Barry, J.; Cordova, D.; Leighty, M. R.; Tong, T. M.-H.; Hughes, A. K.; Lahm, P. G.; Pahutski, F. T. Jr.; Xu, M.; Briddell, A. T.; McCann, F. T.; Henry, T. Y.; Chen, Y. Z. Bioorg. Med. Chem. Lett. 2017, 27, 911.  doi: 10.1016/j.bmcl.2017.01.002

    19. [19]

      Cordova, D.; Benner, A. E.; Schroeder, E. M.; Holyoke, W. C. Jr.; Zhang, W. M.; Pahutski, F. T. Jr.; Leighty, M. R.; Vincent, R. D.; Hamm, C. J. Insect. Biochem. Mol. Biol. 2016, 74, 32.  doi: 10.1016/j.ibmb.2016.04.008

    20. [20]

      Narine, A.; Dickhaut, J.; Kaiser, F.; Bandur, N. G.; Koerber, K.; Von Deyn, W.; Derksen, S.; Paulini, R.; Culbertson, D. L. WO 201314428, 2013[Chem. Abstr. 2013, 1548107].

    21. [21]

      Dickhaut, J.; Narine, A.; Derksen, S.; Bandur, N. G.; Von Deyn, W.; Koller, R.; Wach, J.-Y.; Langewald, J.; Rankl, N. B. WO 2014202582, 2014[Chem. Abstr. 2014, 2127280].

    22. [22]

      Narine, A.; Bandur, N. G.; Dickhaut, J.; Derksen, S.; Koller, R.; Von Deyn, W.; Wach, J.-Y.; Culbertson, D. L. WO 2014167084, 2014[Chem. Abstr. 2014, 1752875].

    23. [23]

      Narine, A.; Dickhaut, J.; Kaiser, F.; Bandur, N. G.; Koerber, K.; Von Deyn, W. WO 2014033244, 2014[Chem. Abstr. 2014, 353348].

    24. [24]

      Dickhaut, J.; Narine, A.; Von Deyn, W.; Koller, R.; Wach, J.-Y.; Vyas, D.; Adisechan, A.; Shinde, H. WO 2016055431, 2016[Chem. Abstr. 2016, 588392].

    25. [25]

      Hasegawa, S.; Kamo, T.; Kagohara, Y.; Miyake, T.; Kobayashi, T.; Matsuda, R.; Asano, S.; Kudamatsu, A. WO 2016171053, 2016[Chem. Abstr. 2016, 1739385].

    26. [26]

      Pan, J. K.; Yu, L.; Liu, D. Y.; Hu, D. Y. Molecules 2018, 23, 1217.  doi: 10.3390/molecules23051217

    27. [27]

      Chen, X. W.; Gan, X. H.; Chen, J. X.; Chen, Y. Z.; Wang, Y. J.; Hu, D. Y.; Song, B. A. Chin. J. Org. Chem. 2017, 37, 2343(in Chinese).
       

    28. [28]

      Wang, B. L.; Zhu, H. W.; Li, Z. M.; Xiong, L. X.; Li, Y. Q.; Zhao, Y.; Zhang, J. F.; Chen, Y. W.; Zhou, S.; Li, Z. M. J. Agric. Food Chem. 2013, 61, 5483.  doi: 10.1021/jf4012467

    29. [29]

      Wang, Y. H.; Yang L.; Liu, Z. C. Chin. J. Org. Chem. 2013, 33, 154(in Chinese).
       

    30. [30]

      Gan, X. H.; Cheng, Z.; Wang, Y. J.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2017, 27, 4298.  doi: 10.1016/j.bmcl.2017.08.038

    31. [31]

      Jin, G. Y.; Hou, Z.; Zhao, G. F.; Cao, C. Y.; Li, Y. C. Chem. J. Chin. Univ. 1997, 18, 409(in Chinese).  doi: 10.3321/j.issn:0251-0790.1997.03.015

    32. [32]

      Knerr, P. J.; Tzekou. A.; Ricklin, D.; Qu, H. C.; Chen, H.; Donk, W. A.; Lambris, J. D. ACS Chem. Biol. 2011, 15, 753.

    33. [33]

      Xu, W. M.; Li, S. Z.; He, M.; Yang, S. Li, X. Y.; Li, P. Bioorg. Med. Chem. Lett. 2013, 23, 5821.  doi: 10.1016/j.bmcl.2013.08.107

    34. [34]

      Lei, G. Y.; Ying, J. W.; Liu, C.; L.; Luo, H.; Song, Y. Q.; Yang, H. B.; Li, B. Modern Agrochem. 2016, 15, 5(in Chinese).  doi: 10.3969/j.issn.1671-5284.2016.05.002

    35. [35]

      Holyoke, W. C. Jr.; Tong, T. M.-H.; Zhang, W. M. WO 2012106495, 2012[Chem. Abstr. 2012, 1158736].

    36. [36]

      Wang, X.; Li, P.; Li, Z. M.; Yin, J.; He, M.; Xue, W.; Chen, Z.; Song, B. A. J. Agric. Food Chem. 2013, 61, 9575.  doi: 10.1021/jf403193q

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    8. [8]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(13)
  • Abstract views(982)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return