Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation

Tinghui Xie Xiaoying Jiang Zhisheng Mi Xue Li Xiaohe Xu Renren Bai Qi Shuai Yuanyuan Xie

Citation:  Xie Tinghui, Jiang Xiaoying, Mi Zhisheng, Li Xue, Xu Xiaohe, Bai Renren, Shuai Qi, Xie Yuanyuan. Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3294-3298. doi: 10.6023/cjoc201903007 shu

微波辅助下通过Fe/O2催化C-H键官能团化合成喹啉-2-甲醛类化合物

    通讯作者: 谢媛媛, xyycz@zjut.edu.cn
  • 基金项目:

    国家自然科学基金 20150281

    国家自然科学基金(No.20150281)资助项目

摘要: 在微波辅助下成功开发了一种由Fe3+/O2催化一锅法合成喹啉-2-甲醛类化合物的方法.以2-甲基喹啉为原料,O2为醛基中氧的合成子,得到一系列底物适应性较广的喹啉-2-甲醛类化合物,产率48%~80%.初步机理研究表明,该反应可能经历了一个自由基历程.此方法具有操作简便、反应时间短、选择性好等优点.

English

  • 2-Methyquinoline is an important scaffold, which is widely used in organic synthesis. With its active methyl, it could be not only prefunctionlized in short reaction steps with high atom economy, [1] but also represents a potential synthon for the access of functionalized compounds, such as aldehydes, [2] nitriles[3] as well as halomethylation products.[4] 2-Quinoline carboxaldehydes commonly used as pharmaceutical intermediates, have a profound influence on the biological activities, such as antineoplastic and antimalarial activities of the following drugs[5] (Figure 1).

    Figure 1

    Figure 1.  Compounds derived from 2-quinoline carboxaldehydes

    The preparation of 2-quinoline carboxaldehydes has been extensively studied and reviewed.[6] Holzapfel and co-workers[7] reported the direct formylation of aryl halides into 2-quinoline carboxaldehydes in the presence of carbon monoxide and hydrogen using palladium as a catalyst. Ding et al.[8] described a method to synthesize 2-quinoline carboxaldehydes by treating 2-methylquinolines with SeO2 at 170 ℃. Moreover, trioxane-promoted formylation of quinolines was established for the synthesis of 2-quinoline carboxaldehydes by Minisci et al.[9] Wang et al.[10] found that 2-methyquinolines could be oxidized in hours by O2 in the presence of copper catalyst, generating the corresponding 2-quinoline carboxaldehydes. However, the generality of these methods was severely hampered by their drawbacks such as high pressure, high toxicity, limited environmental acceptability in view of the demand of industry and long reaction time.

    Over the past decade, ferric salts have attracted considerable attention as an inexpensive and commercially available substance to promote a diverse number of reactions.[11] In most of these reports, Fe(NO3)3·9H2O was demonstrated as a good catalyst or oxidant exhibiting high activity in oxidative process.[12] In light of the recently developed applications of 2-quinoline carboxaldehydes, herein, we report the iron(Ⅲ)/O2-promoted oxidative formylation of 2-methyl quinolines, yielding various 2-quinoline carboxaldehydes under microwave irradiation through a radical mechanism. This protocol has a lot of advantages, such as short reaction time, easy operation, non-toxicity and good selectivity.

    As an initial test, 2-methylquinoline was chosen as the model substrate in order to ascertain the feasibility and optimize the reaction conditions (Table 1).

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Promoter Fe3+/1a (molar ratio) Solvent Temp./℃ Timeb/min Yieldc/%
    1 FeCl2 1/1 DMSO 130 30 Trace
    2 FeCl3 1/1 DMSO 130 10 60
    3 FeCl3·6H2O 1/1 DMSO 130 10 62
    4 Fe(NO3)3·9H2O 1/1 DMSO 130 10 65
    5 Fe(NO3)3·9H2O 0.5/1 DMSO 130 10 46
    6 Fe(NO3)3·9H2O 1.5/1 DMSO 130 10 58
    7 Fe(NO3)3·9H2O 1/1 DMF 130 15 61
    8 Fe(NO3)3·9H2O 1/1 Toluene 130 30 53
    9 Fe(NO3)3·9H2O 1/1 Dioxane 130 30 48
    10 Fe(NO3)3·9H2O 1/1 DMAC 130 15 60
    11 Fe(NO3)3·9H2O 1/1 DMSO 140 8 70
    12 Fe(NO3)3·9H2O 1/1 DMSO 150 5 78
    13 Fe(NO3)3·9H2O 1/1 DMSO 160 5 71
    14 Fe(NO3)3·9H2O 1/1 DMSO 150 1 37
    15 Fe(NO3)3·9H2O 1/1 DMSO 150 10 76
    16d Fe(NO3)3·9H2O 1/1 DMSO 150 30 45
    17e Fe(NO3)3·9H2O 1/1 DMSO 150 30 18
    a Reaction conditions: 1a (1 mmol), solvent (10 mL), under microwave irradiation in O2; b Monitored by TLC; c Isolated yield; d The reaction was heated in an oil bath in Air; e The reaction was heated in N2

    Iron(Ⅲ) was found to be crucial for this reaction, while iron(Ⅱ) failed to give any desired product (Entry 2 vs Entry 1). Notably, other kind of iron(Ⅲ) also succeed in producing the expected product, and Fe(NO3)3·9H2O turned out to be the optimal to afford 2a in 65% yield (Entries 3 and 4). Changing the ratio of iron(Ⅲ) to 1a led to a decrease in reaction yield (Entries 4~6). The effect of solvent on the reaction was also examined. The reaction was completed in 10 mins with a good yield of 65% in dimethyl sulfoxide (DMSO). Other solvents such as N, N-dimethylformamide (DMF), toluene, dioxane, and N, N-dimethylacetamide (DMAC) gave a lower yield of the product with longer reaction time (Entries 4, 7~10). The temperature of this conversion was also screened, 150 ℃ was found to be the optimal temperature, producing 2a in 78% yield in 5 min (Entries 4, 11~13). The materials decomposed at a higher temperature. The results obtained by changing reaction time were similar to those obtained by changing reaction temperature, 5 min being the best choice for this transformation (En- tries 12, 14~15). Other trials, such as performing the reaction under N2 atmosphere, decrease the yield compared with that under air (Entries 16 and 17), indicating that O2 was essential for the present conversion.

    Based on the above results, the optimized conditions for the conversion of 2-methylquinolines (1.0 mmol) into 2-quinoline carboxaldehydes were as follows: iron nitrate nonahydrate (1.0 equiv.) and DMSO (10 mL) in a sealed tube full of O2 under microwave irradiation.

    With the optimized reaction conditions in hand, the scope of a variety of 2-methylquinolines was then tested to investigate the impact of electronic as well as steric factors on the reaction profile. The results were summarized in Table 2. Delightedly, compared with other oxidative methods, the major drawback of overoxidation of aldehydes was not observed under current reaction conditions. What's more, we found that the reaction was selective and only occurred on the methyl group at 2-position in the presence of other methyl groups on the quinoline ring (Entries 4, 5, and 6). It was observed that 2-methylquinolines with both electron-donating groups (Entries 2~6) and electron-withdrawing groups (Entries 7~10) gave the corresponding products in moderate to good yield. Interestingly, more iron(Ⅲ) and time were needed with electron-donating substituents viz. 6-OMe (1b), 7-OMe (1c), 3-Me (1d), 6-Me (1e), 8-Me (1f). It was noteworthy that disubstituted ones viz. 3-Me (1d), 8-Me (1f), 8-Cl (1g) underwent difficultly in providing the corresponding 2-quinoline carboxaldehydes in modest yields (48%~54%), which might be due to the steric effect at C(3) or C(8) position of 2-methylquinolines. Furthermore, 2-methylquinoxaline (1k) was also compatible to access aldehyde derivative 2k in a good yield of 80% (Entries 11).

    Table 2

    Table 2.  Synthesis of 2-quinoline carboxaldehydesa
    下载: 导出CSV
    Entry X R Timeb/min Fe3+/1 (molar ratio) Product Yieldc/%
    1 CH H 5 1.0 2a 78
    2 CH 6-OMe 10 1.5 2b 60
    3 CH 7-OMe 10 1.5 2c 64
    4 CH 3-Me 10 1.5 2d 54
    5 CH 6-Me 10 1.5 2e 63
    6 CH 8-Me 10 1.5 2f 48
    7 CH 8-Cl 5 1.0 2g 52
    8 CH 6-NO2 5 1.0 2h 81
    9 CH 6-F 5 1.0 2i 73
    10 CH 6-Cl 5 1.0 2j 67
    11 N H 5 1.0 2k 80
    a Reaction conditions: 1 (1 mmol), DMSO (10 mL), MW 150 ℃, power 150 W in O2. b Monitored by TLC. c Isolated yield.

    According to the optimization of process conditions, the amplification experiments to investigate the impurities were studied with the reaction condition of 1a (10 mmol), Fe(NO3)3·9H2O (10 mmol), DMSO (10 mL), MW 150 ℃, power 150 W in O2. The impurities 3 and 4 were determined in the yields of 10.8% and 3.5% (Figure 2).

    Figure 2

    Figure 2.  Impurities of 3 and 4

    To explore the reaction mechanism, the radical trapping experiment was carried out by using 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) as a radical scavenger (Scheme 1). As expected, the reaction failed to give 2-quinoline carboxaldehydes. This result indicated that the reaction might involve a radical pathway.

    Scheme 1

    Scheme 1.  Radical trapping experiment with TEMPO

    On the basis of above experiment and literature examples, [13] a plausible mechanism was deduced (Scheme 2). In this hypothesis, it is assumed that 1a can be isomerized to a nonaromatic enamine intermediate A, which then coordinates with iron(Ⅲ) nitrate nonahydrate to generate iron-enamide species B. Fe3+ replaces the nitro to react firstly with molecular oxygen to form a Fe3+ peroxo species C, subsequent isomerization gives peroxide D. Elimination of [Fe2+]OH affords 2-quinoline carboxaldehydes 2a.

    Scheme 2

    Scheme 2.  Plausible mechanism

    In summary, the oxidative formylation of various quinolone derivatives was presented in the presence of iron(Ⅲ) nitrate nonahydrate and DMSO under O2 atmosphere promoted by microwave irradiation. Availability, stability and non-toxicity of the reagents, mild reaction conditions, relatively short reaction time, promising yields, and easy work-up are advantages which make this methodology be an important alternative for the preparation of 2-quinoline carboxaldehydes.

    All reagents were obtained from commercial suppliers and used without further purification, unless otherwise indicated. TLC analysis was performed using pre-coated glass plates. Silica gel for column chromatography was purchased from Qingdao Haiyang Chemical Co., Ltd. Microwave reactor was CEM Discover 908010 microwave reactor with IR-monitored temperature control. Melting points were determined using a Büchi B-540 capillary melting point apparatus. 1H NMR and 13C NMR spectra were measured on a Varian 400 (400 MHz) spectrometer (chemical shifts in δ) using tetramethylsilane as internal standard.

    2-methylquinolines (1, 1 mmol), Fe(NO3)3·9H2O (1 mmol) and DMSO (10 mL) were mixed in an 80 mL microwave tube full of O2. The mixture was stirred at 150 ℃ for 5 min under microwave irradiation using a CEM Discover microwave reactor. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was filtered firstly, then washed by sodium bicarbonate solution and filtered. The aqueous layer extracted with ethyl acetate (10 mL×3). The combined organic layers were dried over Na2SO4 and concentrated in vacuo and the crude residue was purified by flash chromatography on silica gel using hexane/EtOAc as eluent to give the product 2a~2k.

    Quinoline-2-carboxaldehyde (2a): Yield 78%. White solid, m.p. 68~69 ℃ (lit.[14] 70~72 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.21 (s, 1H), 8.29 (d, J=8.4 Hz, 1H), 8.23 (d, J=8.4 Hz, 1H), 8.01 (d, J=8.4 Hz, 1H), 7.88 (d, J=8.0 Hz, 1H), 7.83~7.79 (m, 1H), 7.69~7.66 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 192.8, 152.0, 147.4, 137.0, 130.1, 130.0, 129.7, 128.8, 127.5, 117.1.

    6-Methoxyquinoline-2-carbaldehyde (2b): Yield 60%. Yellow solid, m.p. 101~102 ℃ (lit.[15] 105 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.16 (s, 1H), 8.15 (d, J=8.4 Hz, 1H), 8.11 (d, J=9.2 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 7.45 (dd, J=9.2 Hz, 2.8 Hz, 1H), 7.11 (d, J=2.8 Hz, 1H), 3.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 192.4, 159.2, 149.9, 143.3, 135.2, 131.4, 131.2, 123.2, 117.5, 104.8, 55.9.

    7-Methoxyquinoline-2-carbaldehyde (2c): Yield 64%. Yellow solid, m.p. 103~105 ℃ (lit.[16]); 1H NMR (400 MHz, CDCl3) δ: 10.15 (s, 1H), 8.15~8.08 (m, 2H), 7.98~7.94 (m, 1H), 7.45~7.42 (m, 1H), 7.10 (s, 1H), 3.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 193.2, 159.7, 150.4, 143.8, 135.4, 131.7, 131.4, 123.4, 117.7, 104.9, 55.7.

    3-Methylquinoline-2-carbaldehyde (2d): Yield 54%. Yellow solid, m.p. 111~112 ℃ (lit.[17] 115~116 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.30 (s, 1H), 8.17 (d, J=8.4 Hz, 1H), 7.99 (s, 1H), 7.78 (d, J=8.4 Hz, 1H), 7.75~7.71 (m, 1H), 7.65~7.61 (m, 1H), 2.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 195.0, 150.6, 146.2, 138.0, 130.8, 129.7, 129.2, 129.0, 126.6, 19.2.

    6-Methylquinoline-2-carbaldehyde (2e): Yield 63%. Yellow solid, m.p. 105~106 ℃ (lit.[18] 105~106 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.18 (s, 1H), 8.18 (d, J=8.4 Hz, 1H), 8.11 (d, J=8.8 Hz, 1H), 7.97 (d, J=8.4 Hz, 1H), 7.64~7.63 (m, 2H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 192.6, 151.2, 145.9, 139.1, 136.0, 132.3, 129.7, 129.5, 126.2, 117.1, 22.3.

    8-Methylquinoline-2-carbaldehyde (2f): Yield 48%. Yellow solid, m.p. 78~79 ℃ (lit.[15] 81 ℃); 1HNMR (400 MHz, CDCl3) δ: 10.21 (s, 1H), 8.23 (d, J=8.4 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 7.70 (d, J=8.8 Hz, 1H), 7.64~7.62 (m, 1H), 7.56~7.52 (m, 1H), 2.88 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 193.9, 151.4, 146.8, 138.7, 137.2, 130.2, 130.0, 128.8, 125.6, 116.8, 17.9.

    8-Chloroquinoline-2-carbaldehyde (2g): Yield 52%. Yellow solid, m.p. 143~145 ℃ (lit.[19] 129~131 ℃); 1H NMR (400 MHz, CDCl3) δ:: 10.28 (s, 1H), 8.33 (d, J=8.4 Hz, 1H), 8.08 (d, J=8.4 Hz, 1H), 7.92 (d, J=8.0 Hz, 1H), 7.82 (d, J=8.0 Hz, 1H), 7.59 (t, J=8.0, Hz, 1H); 13C NMR (100 MHz, CDCl3) ℃: 192.3, 152.2, 143.7, 137.4, 134.4, 130.9, 130.1, 128.6, 126.4, 117.7.

    6-Nitro-quinoline-2-carboxaldehyde (2h): Yield 81%. Yellow solid, m.p. 190~192 ℃ (lit.[20] 188~189 ℃); 1H NMR (400 MHz, DMSO) δ: 10.12 (s, 1H), 9.17 (d, J=2.4 Hz, 1H), 8.92 (d, J=8.4 Hz, 1H), 8.55 (dd, J=9.2 Hz, 2.4 Hz, 1H), 8.40 (d, J=9.6 Hz, 1H), 8.13 (d, J=8.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 193.2, 154.4, 148.7, 146.2, 140.2, 131.4, 128.5, 124.9, 123.6, 118.4.

    6-Fluoro-quinoline-2-carboxaldehyde (2i): Yield 73%. White solid, m.p. 116~117 ℃ (lit.[21] 122~124 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.18 (s, 1H), 8.26~8.23 (m, 2H), 8.03 (d, J=8.8 Hz, 1H), 7.61~7.56 (m, 1H), 7.51 (dd, J=8.4 Hz, 2.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 192.3, 161.2 (d, 1JCF=249.4 Hz), 151.5, 144.4, 136.1 (d, 4JCF=5.4 Hz), 132.6 (d, 3JCF=9.3 Hz), 130.5 (d, 3JCF=10.5 Hz), 120.6 (d, 2JCF=25.7 Hz), 117.7, 110.6 (d, 2JCF=21.8 Hz).

    6-Chloroquinoline-2-carbaldehyde (2j): Yield 67%; Yellow solid, m.p. 136~137 ℃ (lit.[15] 170~171 ℃); 1H NMR (400 MHz, CDCl3) δ: 10.18 (s, 1H), 8.22~8.16 (m, 2H), 8.03 (d, J=8.4 Hz, 1H), 7.78 (s, 1H), 7.74 (d, J=8.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 192.2, 152.1, 145.7, 135.9, 134.7, 131.5, 131.0, 130.1, 126.1, 117.9.

    Quinoxaline-2-carboxaldehyde (2k): Yield 80%. Yellow solid, m.p. 97~98 (lit.[22] 107~108 ℃); 1H NMR (400 MHz, CDCl3) δ:: 10.20 (s, 1H), 9.35 (s, 1H), 8.20~8.11 (m, 2H), 7.92~7.82 (m, 2H); 13C NMR (100 MHz, CDCl3) δ:: 191.6, 145.0, 141.9, 132.8, 132.4, 131.4, 130.7, 130.0, 129.2.

    Quinoline (3): Yield 10.8%. Yellow oil. 1H NMR (400 MHz, CDCl3) δ: 8.90 (d, J=8.4 Hz, 1H), 8.23 (d, J=3.2 Hz, 1H), 8.12 (t, J=9.6 Hz, 1H), 7.80 (d, J=8.0 Hz, 1H), 7.71 (t, J=7.2 Hz, 1H), 7.53 (t, J=7.2 Hz, 1H), 7.38 (dd, J=8.4, 4.4 Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ: 150.6, 148.4, 136.3, 129.7, 129.6, 128.5, 128.0, 126.7, 121.2; HRMS (ESI) calcd for [M+H]+ C9H8N, m/z 130.0651, found 130.0652.

    Di-2-quinolinylmethanone (4): Yield 3.5%, yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.31 (d, J=8.4 Hz, 2H), 8.18 (d, J=8.4 Hz, 2H), 7.90 (d, J=8.0 Hz, 2H), 7.85 (t, J=7.6 Hz, 2H), 7.73~7.69 (m, 4H); HRMS (ESI) calcd for [M+H]+ C19H13N2O, m/z 285.1022, found 285.1030.

    Supporting Information  1H NMR and 13C NMR spectra copies of the products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      (a) Li, Z.; Wu, S.-S.; Luo, Z.-G.; Liu, W.-K.; Feng, C.-T.; Ma, S.-T. J. Org. Chem. 2016, 81, 4386.
      (b) Xu, L.-B.; Shao, Z.-Z.; Wang, L.; Zhao, H.-L.; Xiao, J. Tetrahedron Lett. 2014, 55, 6856.
      (c) Thirunavukkarasu, V. S.; Kozhushkov S. I.; Ackermann, L. Chem. Commun. 2014, 50, 29.

    2. [2]

      (a) Derong, D.; Linda, P. D.; Peter, A. C. Tetrahedron Lett. 2013. 54, 5211.
      (b) Jiang, L.; Huang, Y.-Y.; Yan, Y.-Y.; Xie, Y.-Y. Tetrahedron Lett. 2016, 57, 4149.

    3. [3]

      Guo, S.-J.; Wan, G.; Sun, S.; Jiang, Y.; Yu, J.-T.; Cheng, J. Chem. Commun. 2015, 51, 5085. doi: 10.1039/C5CC01024A

    4. [4]

      Xie, Y.-Y.; Li, L.-H. Tetrahedron Lett. 2014, 55, 3892. doi: 10.1016/j.tetlet.2014.04.023

    5. [5]

      (a) Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q. P.; Padhye, S.; Sarkar, F. H. J. Med. Chem. 2006, 49, 7242.
      (b) Teguh, S. C.; Klonis, N.; Duffy, S.; Lucantoni, L.; Avery, V. M.; Hutton, C. A.; Baell, J. B.; Tilley, L. J. Med. Chem. 2013, 56, 6200.

    6. [6]

      (a) Pokhrel, L.; Kim, Y.; Nguyen, T. D. T.; Prior, A. M.; Lu, J. Y.; Chang, K. O.; Hua, D. H. Bioorg. Med. Chem. Lett. 2012, 22, 3480.
      (b) Dai, Q.; Yu, J.-T.; Feng, X.-M.; Jiang, Y.; Yang, H.-T.; Cheng, J. Adv. Synth. Catal. 2014, 356, 3341.
      (c) Gopinath, V. S.; Pinjari, J.; Dere, R. T.; Verma, A.; Vishwakarma, P.; Shivahare, R.; Moger, M.; Goud, P. S. K.; Ramanathan, V.; Bose, P.; Rao, M. V. S.; Gupta, S.; Puri, S. K.; Launay, D.; Martin, D. Eur. J. Med. Chem. 2013, 69, 527.

    7. [7]

      Holzapfel, C. W.; Ferreira, A. C.; Marais, W. J. Chem. Res., Synop. 2002, 5, 218.

    8. [8]

      Ding, D.; Dwoskin, L. P.; Crooks, P. A. Tetrahedron Lett. 2013, 54, 5211. doi: 10.1016/j.tetlet.2013.07.067

    9. [9]

      Minisci, F.; Vismara, E.; Levi, S. J. Org. Chem. 1986, 51, 536. doi: 10.1021/jo00354a026

    10. [10]

      Zheng, G.; Liu, H.; Wang, M. Chin. J. Chem. 2016, 34, 519. doi: 10.1002/cjoc.201500918

    11. [11]

      (a) Sindhu, K. S.; Abi, T. G.; Mathai, G.; Anilkumar, G. Polyhedron 2019, 158, 270.
      (b) Wusiman, A.; Hudabaierdi, R. Tetrahedron Lett. 2019, 60, 681.
      (c) Wang, X.-Z.; Zeng, C.-C. Tetrahedron 2019, 75, 1425.
      (d) Ding, X.-Y.; Xu, F. Chin. J. Org. Chem. 2018, 38, 3345 (in Chinese).
      (丁晓友, 徐凡, 有机化学, 2018, 38, 3345.)

    12. [12]

      (a) Ma, S.-M.; Liu, J.-X.; Li, S.-H.; Chen, B.; Cheng, J.-J.; Kuang, J.-Q.; Liu, Y.; Wan, B.-Q.; Wang, Y.-L.; Ye, J.-T.; Yu, Q.; Yuan, W. M.; Yu, S.-C. Adv. Synth. Catal. 2011, 353, 1005.
      (b) Silva, M. J.; Carari, D. M. Catal. Lett. 2014, 144, 615.
      (c) Tanaka, S.; Kon, Y.; Uesaka, Y.; Morioka, R.; Tamura, M.; Sato, K. Chem. Lett. 2016, 45, 188.
      (d) Xu, X.-H.; Sun, J.; Cheng, J.-Y.; Li, P.-P.; Jiang, X.-Y.; Bai, R.-R.; Xie, Y.-Y. Eur. J. Org. Chem. 2017, 47, 7160.
      (e) Amaya, T.; Fujimoto, H. Tetrahedron Lett. 2018, 59, 2657.
      (f) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem. Int. Ed. 2008, 47, 8897.
      (g) Namboodiri, V. V.; Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 8839.

    13. [13]

      (a) Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Liu, S.-S.; Zou, K. Tetrahedron. 2014, 70, 3056.
      (b) Rao, N. N.; Meshram, H. M.; Tetrahedron Lett. 2013, 54, 1315.
      (c) Li, Q.; Huang, Y.; Chen, T.-Q.; Zhou, Y.-B.; Xu, Q.; Yin, S.-F.; Han, L.-B. Org. Lett. 2014, 16, 3672.

    14. [14]

      Yasunari, M.; Kanoko, Y.; Takashi, T.; Takayuki, A.; Tomohiro, M.; Kosaku, H.; Hironao, S. Heterocycles 2010, 80, 737.

    15. [15]

      Mathes, W.; Sauermilch, W. Chem. Ber. 1957, 90, 758. doi: 10.1002/cber.19570900519

    16. [16]

      Chen, X.-Y.; Shi, J.; Li, Y.-M.; Wang, F.-L.; Wu, X.; Guo, Q.-X.; Liu, L. Org. Lett. 2009, 11, 4421.

    17. [17]

      Brown, B. R.; Hammick, D. L. J. Chem. Soc. 1950, 628. doi: 10.1039/jr9500000628

    18. [18]

      Buehler, C. A.; Edwards, S. P. J. Am. Chem. Soc. 1952, 74(4), 977.

    19. [19]

      Ballesteros, G. R.; Leroux, F. R.; Ballesteros, R. Tetrahedron 2009, 65(22), 4410. doi: 10.1016/j.tet.2009.03.058

    20. [20]

      Janina, B. PL 56421, 1968[Chem. Abstr. 1968, 70, 115023].

    21. [21]

      Wang, L.; Hou, X.-B.; Fu, H.-S.; Pan, X.-L.; Xu, W.-F.; Tang, W.-P; Fang, H. Bioorg. Med. Chem. 2015, 15(23), 4364.

    22. [22]

      Leese, C. L.; Rydon, H. N. J. Chem. Soc. 1956, 303. doi: 10.1039/jr9560000303

  • Figure 1  Compounds derived from 2-quinoline carboxaldehydes

    Figure 2  Impurities of 3 and 4

    Scheme 1  Radical trapping experiment with TEMPO

    Scheme 2  Plausible mechanism

    Table 1.  Optimization of the reaction conditionsa

    Entry Promoter Fe3+/1a (molar ratio) Solvent Temp./℃ Timeb/min Yieldc/%
    1 FeCl2 1/1 DMSO 130 30 Trace
    2 FeCl3 1/1 DMSO 130 10 60
    3 FeCl3·6H2O 1/1 DMSO 130 10 62
    4 Fe(NO3)3·9H2O 1/1 DMSO 130 10 65
    5 Fe(NO3)3·9H2O 0.5/1 DMSO 130 10 46
    6 Fe(NO3)3·9H2O 1.5/1 DMSO 130 10 58
    7 Fe(NO3)3·9H2O 1/1 DMF 130 15 61
    8 Fe(NO3)3·9H2O 1/1 Toluene 130 30 53
    9 Fe(NO3)3·9H2O 1/1 Dioxane 130 30 48
    10 Fe(NO3)3·9H2O 1/1 DMAC 130 15 60
    11 Fe(NO3)3·9H2O 1/1 DMSO 140 8 70
    12 Fe(NO3)3·9H2O 1/1 DMSO 150 5 78
    13 Fe(NO3)3·9H2O 1/1 DMSO 160 5 71
    14 Fe(NO3)3·9H2O 1/1 DMSO 150 1 37
    15 Fe(NO3)3·9H2O 1/1 DMSO 150 10 76
    16d Fe(NO3)3·9H2O 1/1 DMSO 150 30 45
    17e Fe(NO3)3·9H2O 1/1 DMSO 150 30 18
    a Reaction conditions: 1a (1 mmol), solvent (10 mL), under microwave irradiation in O2; b Monitored by TLC; c Isolated yield; d The reaction was heated in an oil bath in Air; e The reaction was heated in N2
    下载: 导出CSV

    Table 2.  Synthesis of 2-quinoline carboxaldehydesa

    Entry X R Timeb/min Fe3+/1 (molar ratio) Product Yieldc/%
    1 CH H 5 1.0 2a 78
    2 CH 6-OMe 10 1.5 2b 60
    3 CH 7-OMe 10 1.5 2c 64
    4 CH 3-Me 10 1.5 2d 54
    5 CH 6-Me 10 1.5 2e 63
    6 CH 8-Me 10 1.5 2f 48
    7 CH 8-Cl 5 1.0 2g 52
    8 CH 6-NO2 5 1.0 2h 81
    9 CH 6-F 5 1.0 2i 73
    10 CH 6-Cl 5 1.0 2j 67
    11 N H 5 1.0 2k 80
    a Reaction conditions: 1 (1 mmol), DMSO (10 mL), MW 150 ℃, power 150 W in O2. b Monitored by TLC. c Isolated yield.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  753
  • HTML全文浏览量:  73
文章相关
  • 发布日期:  2019-11-25
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-04-25
  • 网络出版日期:  2019-11-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章